相关习题
 0  350337  350345  350351  350355  350361  350363  350367  350373  350375  350381  350387  350391  350393  350397  350403  350405  350411  350415  350417  350421  350423  350427  350429  350431  350432  350433  350435  350436  350437  350439  350441  350445  350447  350451  350453  350457  350463  350465  350471  350475  350477  350481  350487  350493  350495  350501  350505  350507  350513  350517  350523  350531  366461 

科目: 来源: 题型:

【题目】如图,点A(1﹣,1+)在双曲线y=(x<0)上.

(1)求k的值;
(2)在y轴上取点B(0,1),为双曲线上是否存在点D,使得以AB,AD为邻边的平行四边形ABCD的顶点C在x轴的负半轴上?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1、x2 , 且满足x12+x22=31+|x1x2|,求实数m的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)

请根据统计图完成下列问题:
(1)扇形统计图中,“很喜欢”所对应的圆心角为 ;条形统计图中,喜欢“糖馅”粽子的人数为
(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;
(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在我市开展“五城联创”活动中,某工程队承担了某小区900米长的污水管道改造任务.工程队在改造完360米管道后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造管道多少米?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,小华站在河岸上的G点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船C的俯角是∠FDC=30°,若小华的眼睛与地面的距离是1.6米,BG=0.7米,BG平行于AC所在的直线,迎水坡i=4:3,坡长AB=8米,点A、B、C、D、F、G在同一平面内,则此时小船C到岸边的距离CA的长为 米.(结果保留根号)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当= 时,四边形ADFE是平行四边形.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为(  )

A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是(  )

A.
B.
C.
D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线y=(x+2)(x﹣4)与x轴交于点A、B(点A位于点B的左侧),与y轴交于点C,CD∥x轴交抛物线于点D,M为抛物线的顶点.

(1)求点A、B、C的坐标;
(2)设动点N(﹣2,n),求使MN+BN的值最小时n的值;
(3)P是抛物线上一点,请你探究:是否存在点P,使以P、A、B为顶点的三角形与△ABD相似(△PAB与△ABD不重合)?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.

(1)【发现证明】
小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
(2)【类比引申】
如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 系时,仍有EF=BE+FD.
(3)【探究应用】
如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)

查看答案和解析>>

同步练习册答案