相关习题
 0  350466  350474  350480  350484  350490  350492  350496  350502  350504  350510  350516  350520  350522  350526  350532  350534  350540  350544  350546  350550  350552  350556  350558  350560  350561  350562  350564  350565  350566  350568  350570  350574  350576  350580  350582  350586  350592  350594  350600  350604  350606  350610  350616  350622  350624  350630  350634  350636  350642  350646  350652  350660  366461 

科目: 来源: 题型:

【题目】解答题
(1)如图1,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,连结BE,CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并证明:BE=CD;

(2)如图2,利用(1)中的方法解决如下问题:在四边形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,求BD的长.

(3)如图3,四边形ABCD中,∠CAB=90°,∠ADC=∠ACB=α,tanα= ,CD=5,AD=12,求BD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如今,网上购物已成为一种新的消费时尚,精品书店想购买一种贺年卡在元旦时销售,在互联网上搜索了甲、乙两家网

店(如图所示),已知两家网店的这种贺年卡的质量相同,请看图回答下列问题:

(1)假若精品书店想购买x张贺年卡,那么在甲、乙两家网店分别需要花多少钱(用含有x的式子表示)?(提示:如需付运费时运费只需付一次,即8元)

(2)精品书店打算购买300张贺年卡,选择哪家网店更省钱?

查看答案和解析>>

科目: 来源: 题型:

【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为三角形数,而把1,4,9,16…这样的数称为正方形数.从图中可以发现,任何一个大于1正方形数都可以看作两个相邻三角形数之和.下列等式中,符合这一规律的是(  )

A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,A(0,2),B(1,0),点C为线段AB的中点,将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.

(1)若该抛物线经过原点O,且a=﹣ ,求该抛物线的解析式;
(2)在(1)的条件下,点P(m,n)在抛物线上,且∠POB锐角,满足∠POB+∠BCD<90°,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】虽然近几年无锡市政府加大了太湖水治污力度,但由于大规模、高强度的经济活动和日益增加的污染负荷,使部分太湖水域水质恶化,富营养化不断加剧.为了保护水资源,我市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:

月用水量(吨)

单价(元/吨)

不大于10吨部分

1.5

大于10吨不大于m吨部分(20≤m≤50)

2

大于m吨部分

3


(1)若某用户六月份用水量为18吨,求其应缴纳的水费;
(2)记该用户六月份用水量为x吨,缴纳水费为y元,试列出y关于x的函数关系式;
(3)若该用户六月份用水量为40吨,缴纳水费y元的取值范围为70≤y≤90,试求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点P是等边三角形ABC内部一个动点,∠APB=120°,⊙O是△APB的外接圆.AP,BP的延长线分别交BC,AC于D,E.
(1)求证:CA,CB是⊙O的切线;
(2)已知AB=6,G在BC上,BG=2,当PG取得最小值时,求PG的长及∠BGP的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,ABAC,∠BAC50°,∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEO的度数是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.
(1)求证:四边形ABDE是平行四边形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,AB=BC,ABC≌△A1BC1,A1BAC于点E,A1C1分别交AC、BCD、F两点,观察并猜想线EA1FC有怎样的数量关系?并证明你的结论.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校课外兴趣小组在本校学生中开展“感动中国2016年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A,B,C,D四类,其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:

类别

A

B

C

D

频数

30

40

24

b

频率

a

0.4

0.24

0.06


(1)表中的a= , b=
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为D的人数约为多少?

查看答案和解析>>

同步练习册答案