科目: 来源: 题型:
【题目】如图,甲、乙两船从港口A同时出发,甲船以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,1小时后,甲船到达C岛,乙船达到B岛,若C、B两岛相距50海里,则乙船的航行方向为南偏东多少度?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值.
①(x﹣1)(x+1)=x2﹣1
②(x﹣1)(x2+x+1)=x3﹣1
③(x﹣1)(x3+x2+x+1)=x4﹣1
……
由此我们可以得到:(x﹣1)(x99+x98+x97+…+x+1)=
请你利用上面的结论,再完成下面两题的计算:
(1)(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1
(2)若x3+x2+x+1=0,求x2019的值
查看答案和解析>>
科目: 来源: 题型:
【题目】计算
(1)3x3x9﹣2xx3x8
(2)﹣12+20160+(
)2017×(﹣4)2018
(3)(x+4)(x﹣4)﹣(x﹣2)2
(4)ab(a+b)﹣(a﹣b)(a2+b2)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC和△A1B1C1关于x轴成轴对称,画出△A1B1C1
(2)点C1的坐标为_________,△ABC的面积为__________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,∠AOB=30°,OC为∠AOB内部一条射线,点P为射线OC上一点,OP=4,点M、N分别为OA、OB边上动点,则△MNP周长的最小值为( )
![]()
A. 2 B. 4 C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(数学阅读)
如图1,在△ABC中,AB=AC,点P为边BC上的任意一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.
小尧的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
(推广延伸)
如图3,当点P在BC延长线上时,其余条件不变,请运用上述解答中所积累的经验和方法,猜想PD,PE与CF的数量关系,并证明.
![]()
(解决问题)
如图4,在平面直角坐标系中有两条直线l1:y=-
x+3,l2:y=3x+3,l1,l2与x轴的交点分别为A,B.
(1)两条直线的交点C的坐标为 ;
(2)说明△ABC是等腰三角形;
(3)若l2上的一点M到l1的距离是1,运用上面的结论,求点M的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”,这个三角形给出了(a+b)n(n═1,2,3,4,…)的展开式的系数规律(按n的次数由大到小的顺序):
![]()
请依据上述规律,写出(x﹣2)2018展开式中含x2017项的系数是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:
A | B | |
进价(万元/套) | 1.5 | 1.2 |
售价(万元/套) | 1.65 | 1.4 |
该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。
(毛利润=(售价 - 进价)×销售量)
(1)该商场计划购进A,B两种品牌的教学设备各多少套?
(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少数量的1.5倍。若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线
与
轴交于点
(点
分别在
轴的左右两侧)两点,与
轴的正半轴交于点
,顶点为
,已知点
.![]()
(1)求点
的坐标;
(2)判断△
的形状,并说明理由;
(3)将△
沿
轴向右平移
个单位(
)得到△
.△
与△
重叠部分(如图中阴影)面积为
,求
与
的函数关系式,并写出自变量
的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】小明从家出发,沿一条直道散步到离家450 m的邮局,经过一段时间原路返回,刚好在第12 min回到家中.设小明出发第t min时的速度为v m/min,v与t之间的函数关系如图所示(图中的空心圈表示不包含这一点).
(1)小明出发第2 min时离家的距离为 m;
(2)当2< t ≤6时,求小明的速度a;
(3)求小明到达邮局的时间.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com