相关习题
 0  350900  350908  350914  350918  350924  350926  350930  350936  350938  350944  350950  350954  350956  350960  350966  350968  350974  350978  350980  350984  350986  350990  350992  350994  350995  350996  350998  350999  351000  351002  351004  351008  351010  351014  351016  351020  351026  351028  351034  351038  351040  351044  351050  351056  351058  351064  351068  351070  351076  351080  351086  351094  366461 

科目: 来源: 题型:

【题目】在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE= ∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.

(1)当点P与点C重合时(如图①),求证:△BOG≌△POE;
(2)结合图②,通过观察、测量、猜想: 的关系,并证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图③),若AC=8,BD=6,直接写出 的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形纸片DOE的顶点O与边AB的中点重合,OD交BC于点F,OE经过点C,且∠DOE=∠B.

(1)证明△COF是等腰三角形,并求出CF的长;
(2)将扇形纸片DOE绕点O逆时针旋转,OD,OE与边AC分别交于点M,N(如图2),当CM的长是多少时,△OMN与△BCO相似?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知如图 C 是线段 AB 上一点 5BC=2AB,D AB 的中点,E CB 的中点,(1) DE=6,求 AB 的长;(2)求 AD:AC.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列各式中:

3x=﹣4系数化为1x=﹣

52x移项得x52

去分母得22x1)=1+3x3);

22x1)﹣3x3)=1去括号得4x23x91

其中正确的个数有(  )

A. 0 B. 1 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣ +c且过顶点C(0,5)(长度单位:m)

(1)直接写出c的值;
(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2 , 求购买地毯需多少元?
(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.

(1)证明:∠BAE=FEC;

(2)证明:AGE≌△ECF;

(3)求AEF的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1是一个长为2a ,宽为2b的长方形,沿图中虚线剪开分成四块小长方形,然后按如图2的形状拼成一个正方形.

1)图2的阴影部分的正方形的边长是 ______

2)用两种不同的方法求图中阴影部分的面积.

(方法1= _____________

(方法2=______________

3)观察如图2,写出(a+b2,(a-b2ab这三个代数式之间的等量关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AC是正方形ABCD的对角线,点OAC的中点,点QAB上一点,连接CQDPCQ于点E,交BC于点P,连接OPOQ

求证:(1)BCQ≌△CDP(2)OP=OQ.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线

1)如下图,点在直线的左侧,请写出之间的数量关系,并说明理由:

2)如下图,当点在线段上时,分别平分,此时的度数为_________°

3)如下图,当点在直线的左侧时,分别平分,请直接写出的数量关系

4)如下图,当点在直线的右侧时,分别平分,请直接写出的数量关系

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形ABCD内有一点P满足AP=ABPB=PC,连接ACPD

求证:(1APB≌△DPC;(2BAP=2PAC

查看答案和解析>>

同步练习册答案