相关习题
 0  351038  351046  351052  351056  351062  351064  351068  351074  351076  351082  351088  351092  351094  351098  351104  351106  351112  351116  351118  351122  351124  351128  351130  351132  351133  351134  351136  351137  351138  351140  351142  351146  351148  351152  351154  351158  351164  351166  351172  351176  351178  351182  351188  351194  351196  351202  351206  351208  351214  351218  351224  351232  366461 

科目: 来源: 题型:

【题目】将正整数12019按一定规律排列如下表:

平移表中带阴影的方框,则方框中五个数的和可以是(

A. 2010 B. 2018 C. 2019 D. 2020

查看答案和解析>>

科目: 来源: 题型:

【题目】n123,…时,由大小相同的小正方形组成的图形如图所示,则第10个图形中小正方形的个数总和等于(

A. 100 B. 96 C. 144 D. 140

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.

(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;
(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.

查看答案和解析>>

科目: 来源: 题型:

【题目】数轴是一个非常重要的数学工具,通过它把数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.已知数轴上有点A和点B,点A和点B分别表示数-20和40,请解决以下问题:

(1)请画出数轴,并标明A、B两点;

(2)若点P、Q分别从点A、点B同时出发,相向而行,点P、Q移动的速度分别为每秒4个单位长度和2个单位长度.问:当P、Q相遇于点C时,C所对应的数是多少?

(3)若点P、Q分别从点A、点B同时出发,沿x轴正方向同向而行,点P、Q移动的速度分别为每秒4个单位长度和2个单位长度.问:当P、Q相遇于点D时,D所对应的数是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知直线l1∥l2 , 线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.

(1)求证:△ABP≌△CBE;
(2)连结AD、BD,BD与AP相交于点F.如图2.
①当 =2时,求证:AP⊥BD;
②当 =n(n>1)时,设△PAD的面积为S1 , △PCE的面积为S2 , 求 的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).
(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的 ,且空调采购单价不低于1200元,问该商家共有几种进货方案?
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.
(1)求证:△CDE∽△CAD;
(2)若AB=2,AC=2 ,求AE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)问题背景:已知,如图1,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,AB=a,△ABC的面积为S,则有BC=a,S=a2

(2)迁移应用:如图2,△ABC△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.

求证:△ADB≌△AEC;

∠ADB的度数.

AD=2,BD=4,求△ABC的面积.

(3)拓展延伸:如图3,在等腰△ABC中,∠BAC=120°,在∠BAC内作射线AM,点D与点B关于射线AM轴对称,连接CD并延长交AM于点E,AF⊥CDF,连接AD,BE.

∠EAF的度数;

CD=5,BD=2,求BC的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y元与每月用水量xm3之间的关系如图所示.

(1)求关于x的函数解析式;

(2)若某用户二、三月份共用水22m3(二月份用水量比三月份用水量多),缴纳水费共35元,则该用户二月份的用水量是多少m3

查看答案和解析>>

科目: 来源: 题型:

【题目】如果一个正整数能表示成两个连续偶数的平方差,那么这个正整数为“神秘数”.

如:

因此,4,12,20这三个数都是神秘数.

(1)282012这两个数是不是神秘数?为什么?

(2)设两个连续偶数为(其中为非负整数),由这两个连续偶数构造的神秘数是4的倍数,请说明理由.

(3)两个连续奇数的平方差(取正数)是不是神秘数?请说明理由.

查看答案和解析>>

同步练习册答案