精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.
(1)求证:△CDE∽△CAD;
(2)若AB=2,AC=2 ,求AE的长.

【答案】
(1)证明:∵AB是⊙O的直径,

∴∠ADB=90°,

∴∠B+∠BAD=90°,

∵AC为⊙O的切线,

∴BA⊥AC,

∴∠BAC=90°,即∠BAD+∠CAD=90°,

∴∠B=∠CAD,

∵OB=OD,

∴∠B=∠ODB,

而∠ODB=∠CDE,

∴∠B=∠CDE,

∴∠CAD=∠CDE,

而∠ECD=∠DCA,

∴△CDE∽△CAD


(2)解:∵AB=2,

∴OA=1,

在Rt△AOC中,AC=2

∴OC= =3,

∴CD=OC﹣OD=3﹣1=2,

∵△CDE∽△CAD,

= ,即 =

∴CE=

∴AE=AC﹣CE=2 =


【解析】(1)根据圆周角定理由AB是⊙O的直径得到∠ADB=90°,则∠B+∠BAD=90°,再根据切线的性质,由AC为⊙O的切线得∠BAD+∠CAD=90°,则∠B=∠CAD,由于∠B=∠ODB,∠ODB=∠CDE,所以∠B=∠CDE,则∠CAD=∠CDE,加上∠ECD=∠DCA,根据三角形相似的判定方法即可得到△CDE∽△CAD;(2)在Rt△AOC中,OA=1,AC=2 ,根据勾股定理可计算出OC=3,则CD=OC﹣OD=2,然后利用△CDE∽△CAD,根据相似比可计算出CE,再由AE=AC﹣CE可得AE的值.
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A、B的距离,他们设计了如图所示的测量方案:从树A沿着垂直于AB的方向走到E,再从E沿着垂直于AE的方向走到F,C为AE上一点,其中3位同学分别测得三组数据:①AC,∠ACB;②EF、DE、AD;③CD,∠ACB,∠ADB.其中能根据所测数据求得A、B两树距离的有(  )

A.0组
B.一组
C.二组
D.三组

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义新运算:对于任意实数ab,都有ab=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如: 25=2(2-5)+1=2(-3)+1=-6+1=-5.

(1)求(-2)3的值

(2)若3x的值小于13,求x的取值范围,并在图示的数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见下表:

某居民五月份用电190千瓦时,缴纳电费90元.

(1)x的值和超出部分电费单价;

(2)若该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为_______

(2)(4xy)2=9(4x+y)2=169,求xy的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】n123,…时,由大小相同的小正方形组成的图形如图所示,则第10个图形中小正方形的个数总和等于(

A. 100 B. 96 C. 144 D. 140

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB为⊙O的直径,AB=2,AD和BE是圆O的两条切线,A、B为切点,过圆上一点C作⊙O的切线CF,分别交AD、BE于点M、N,连接AC、CB,若∠ABC=30°,则AM=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上的一点,点E在BC边上,连接AE,DE,DC,AE=CD.

(1)求证:△ABE≌△CBD;

(2)若∠BAE=15°,求∠EDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.
(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案