【题目】如果一个正整数能表示成两个连续偶数的平方差,那么这个正整数为“神秘数”.
如:
因此,4,12,20这三个数都是神秘数.
(1)28和2012这两个数是不是神秘数?为什么?
(2)设两个连续偶数为和(其中为非负整数),由这两个连续偶数构造的神秘数是4的倍数,请说明理由.
(3)两个连续奇数的平方差(取正数)是不是神秘数?请说明理由.
【答案】(1)28和2012是神秘数(2)是4的倍数(3)8k不能整除8k+4
【解析】试题分析:(1)根据“神秘数”的定义,只需看能否把28和2012这两个数写成两个连续偶数的平方差即可判断;
(2)运用平方差公式进行计算,进而判断即可;
(3)运用平方差公式进行计算,进而判断即可.
试题解析:1、28=4×7=8-6
2012=4×503=504-502
∴这两个数都是神秘数
2、 (2k+2)-(2k)
=(2k+2-2k)(2k+2+2k)
=2×[2(k+1+k)]
=4(2k+1)
∴由2k+2和2k构造的神秘数是4的倍数
3、设两个连续奇数为2k+1和2k-1,
则(2k+1)-(2k-1)
=(2k+1+2k-1)(2k+1-2k+1)
=4k×2
=8k,
∴两个连续奇数的平方差不是神秘数
科目:初中数学 来源: 题型:
【题目】下列四个命题:
①互为邻补角的两个角的平分线互相垂直;
②经过一点,有且只有一条直线与已知直线平行;
③坐标平面内的点与有序实数对是一一对应的;
④实数a是实数a2的算术平方根.
其中正确命题的序号为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.
(1)试说明:AB∥CD;
(2)若∠2=25°,求∠3的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织学生到生态园春游,某班学生9:00从樱花园出发,匀速前往距樱花园2 km的桃花园.在桃花园停留1 h后,按原路返回樱花园,返程中先按原来的速度行走了6 min,随后接到通知,要尽快回到樱花园,故速度提高到原来的2倍,于10:48回到了樱花园,求这班学生原来的行走速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】尽管受到国际金融危机的影响,但湖州市经济依然保持了平稳增长.据统计,截止到今年4月底,该市金融机构存款余额约为1193亿元,用科学记数法应记为 ( )
A.1.193×1010元 B.1.193×1011元 C.1.193×1012元 D.1.193×1013元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com