科目: 来源: 题型:
【题目】如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(结果保留整数,参考值:
≈1.732)![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图: ![]()
(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,“乒乓球”的百分比为%,如果学校有800名学生,估计全校学生中有人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:m),解答下列问题:
(1)用含x的代数式表示地面总面积;
(2)当x=4,y=2时,铺1 m2地砖的平均费用为30元,那么铺地砖的总费用为多少元?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论: ①快递车从甲地到乙地的速度为100千米/时;
②甲、乙两地之间的距离为120千米;
③图中点B的坐标为(3
,75);
④快递车从乙地返回时的速度为90千米/时,
以上4个结论正确的是 . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】观察下列计算过程,发现规律,利用规律猜想并计算:
1+2=
=3;1+2+3=
=6,1+2+3+4=
=10;1+2+3+4+5=
=15;…
(1)猜想:1+2+3+4+…+n= .
(2)利用上述规律计算:1+2+3+4+…+200;
(3)尝试计算:3+6+9+12+…3n的结果.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知一个角的两边与另一个角的两边分别平行,请结合图,探索这两个角之间的关系,并说明理由.
(1)如图①,AB∥CD,BE∥DF,∠1与∠2的关系是 ;
证明:
(2)如图②,AB∥CD,BE∥DF,∠1与∠2的关系是 ;
证明:
(3)经过上述证明,我们可得出结论,如果一个角的两边与另一个角的两边分别平行,那么这两个角 ;
(4)若这两个角的两边分别平行,且一个角比另一个角的3倍少60°,则这两个角分别是多少度?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读材料
小明遇到这样一个问题:求计算
所得多项式的一次项系数.
小明想通过计算
所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.
他决定从简单情况开始,先找
所得多项式中的一次项系数.通过观察发现:
![]()
也就是说,只需用
中的一次项系数1乘以
中的常数项3,再用
中的常数项2乘以
中的一次项系数2,两个积相加
,即可得到一次项系数.
延续上面的方法,求计算
所得多项式的一次项系数.可以先用
的一次项系数1,
的常数项3,
的常数项4,相乘得到12;再用
的一次项系数2,
的常数项2,
的常数项4,相乘得到16;然后用
的一次项系数3,
的常数项2,
的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.
参考小明思考问题的方法,解决下列问题:
(1)计算
所得多项式的一次项系数为 .
(2)计算
所得多项式的一次项系数为 .
(3)若计算
所得多项式的一次项系数为0,则
=_________.
(4)若
是
的一个因式,则
的值为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】在等边△ABC外作射线AD,使得AD和AC在直线AB的两侧,∠BAD=α(0°<α<180°),点B关于直线AD的对称点为P,连接PB,PC.
(1)依题意补全图1;
(2)在图1中,求△BPC的度数;
(3)直接写出使得△PBC是等腰三角形的α的值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com