科目: 来源: 题型:
【题目】某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).
![]()
请根据上面两个不完整的统计图回答以下4个问题:
(1)这次抽样调查中,共调查了_____名学生.
(2)补全条形统计图中的缺项.
(3)在扇形统计图中,选择教师传授的占_____%,选择小组合作学习的占_____%.
(4)根据调查结果,估算该校1800名学生中大约有_____人选择小组合作学习模式.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市公交公司为应对春运期间的人流高峰,计划购买A、B两种型号的公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车3辆,共需650万元,
(1)试问该公交公司计划购买A型和B型公交车每辆各需多少万元?
(2)若该公司预计在某条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用W不超过1200万元,且确保这10辆公交车在某条线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用W最少?最少总费用是多少万元?
查看答案和解析>>
科目: 来源: 题型:
【题目】矩形ABCD中,BC=3,AB=8,E、F为AB、CD边上的中点,如图1,A在原点处,点B在y轴正半轴上,点C在第一象限,若点A从原点出发,沿x轴向右以每秒1个单位长度的速度运动,则点B随之沿y轴下滑,并带动矩形ABCD在平面上滑动,如图2,设运动时间表示为t秒,当B到达原点时停止运动.![]()
(1)当t=0时,求点F的坐标及FA的长度;
(2)当t=4时,求OE的长及∠BAO的大小;
(3)求从t=0到t=4这一时段点E运动路线的长;
(4)当以点F为圆心,FA为半径的圆与坐标轴相切时,求t的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两车沿同一平直公路由
地匀速行驶(中途不停留),前往终点
地,甲、乙两车之间的距离
(千米)与甲车行驶的时间
(小时)之间的函数关系如图所示。下列说法:①甲、乙两地相距210千米;②甲速度为60千米/小时;③乙速度为120千米/小时;④乙车共行驶
小时,其中正确的个数为( )
![]()
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,矩形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2019次相遇地点的坐标是( )
![]()
A. (1,﹣1)B. (2,0)C. (﹣1,1)D. (﹣1,﹣1)
查看答案和解析>>
科目: 来源: 题型:
【题目】为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.张刚按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.
(1)张刚在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设张刚获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果张刚想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】综合题 ——
(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.![]()
(2)结论应用:
①如图2,点M、N在反比例函数y=
(k>0)的图象上,过点M作ME⊥y轴,垂足分别为E,F,试证明:MN∥EF;![]()
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】2016年国际马拉松赛于承德市举办,起点承德市狮子园,赛道为外环路,终点为奥体中心(赛道基本为直线).在赛道上有A,B两个服务点,现有甲,乙两个服务人员,分别从A,B两个服务点同时出发,沿直线匀速跑向终点C(奥体中心),如图1所示,设甲、乙两人出发xh后,与B点的距离分别为y甲km、y乙km,y甲、y乙与x的函数关系如图2所示.![]()
(1)从服务点A到终点C的距离为km,a=h;
(2)求甲乙相遇时x的值;
(3)甲乙两人之间的距离应不超过1km时,称为最佳服务距离,从甲、乙相遇到甲到达终点以前,保持最佳服务距离的时间有多长?
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,点P在第一象限角平分线上,点A在x轴的正半轴运动,点B在y轴上,且
.
如图1,点B在y轴的正半轴上,
,
,则
______;
如图2,点B与原点重合,
,点Q是OP延长线上一点,连接QA,过点P作
轴,与QA相交于点G,过点P作x轴的垂线,垂足是点H,过点A作QA的垂线与PH相交于点E,过点E作
,与x轴相交于点F,若
,求点E的坐标;
如图3,点B在y轴的负半轴上,PB与x轴相交于点D,连接AB,AO平分
,过点P作
轴于点M,求
的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某班要从甲、乙两名同学中选拔出一人,代表班级参加学校的一分钟踢毽子体能素质比赛,在一段时间内的相同条件下,甲、乙两人进行了六场一分钟踢毽子的选拔测试,根据他们的成绩绘制出如图的统计表和不完整的折线统计图.
甲、乙两人选拔测试成绩统计表
甲成绩 | 乙成绩 | |
第1场 | 87 | 87 |
第2场 | 94 | 98 |
第3场 | 91 | 87 |
第4场 | 85 | 89 |
第5场 | 91 | 100 |
第6场 | 92 | 85 |
中位数 | 91 | n |
平均数 | m | 91 |
并计算出乙同学六场选拔测试成绩的方差:
S乙2=
= ![]()
![]()
(1)m= , n= , 并补全全图中甲、乙两人选拔测试成绩折线统计图;
(2)求甲同学六场选拔测试成绩的方差S甲2;
(3)分别从平均数、中位数和方差的角度分析比较甲、乙二人的成绩各有什么特点?
(4)经查阅该校以往本项比赛的资料可知,①成绩若达到90次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?
②该项成绩的最好记录是95次/min,就有可能夺得冠军,你认为选谁参赛更有把握夺冠?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com