相关习题
 0  351972  351980  351986  351990  351996  351998  352002  352008  352010  352016  352022  352026  352028  352032  352038  352040  352046  352050  352052  352056  352058  352062  352064  352066  352067  352068  352070  352071  352072  352074  352076  352080  352082  352086  352088  352092  352098  352100  352106  352110  352112  352116  352122  352128  352130  352136  352140  352142  352148  352152  352158  352166  366461 

科目: 来源: 题型:

【题目】在数学课上,王老师拿出一张如图 1 所示的长方形 纸(对边,四个角都是直角), 要求同学们用直尺和量角器在 AB 边上找一点 E,使

1)甲同学的做法:在边上任取一点,以 为顶点,以 为一边,用量角器作 角,使另外一边经过点 C,则 即为所求.

2)乙同学的做法:以为始边,在长方形的内部,利用量角器作,射线 交于点,则如图 2 所示 即为所求.

你支持_______同学的做法,作图依据是__________________________________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2-2ax+a+4(a<0)经过点B.

(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.
①写出点M′的坐标;
②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设⊙B, ⊙M′都与直线l′相切,半径分别为R1、R2 , 当R1+R2最大时,求直线l′旋转的角度(即∠BAC的度数).

查看答案和解析>>

科目: 来源: 题型:

【题目】(问题情境)

如图1,四边形ABCD是正方形,MBC边上的一点,ECD边的中点,AE平分∠DAM

(探究展示)

(1)证明:AM=AD+MC

(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.

(拓展延伸)

(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)(2)中的结论是否成立?请分别作出判断,不需要证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】根据表中的信息判断,下列语句中正确的是

(  )

A.1.59

B.235的算术平方根比15.3

C.只有3个正整数n满足

D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19

查看答案和解析>>

科目: 来源: 题型:

【题目】对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.
(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;
(2)函数y=2x2-bx. ①若其不变长度为零,求b的值;
②若1≤b≤3,求其不变长度q的取值范围;
(3)记函数y=x2-2x(x≥m)的图象为G1 , 将G1沿x=m翻折后得到的函数图象记为G2 , 函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:

价格x(元/个)

30

40

50

60

销售量y(万个)

5

4

3

2

同时,销售过程中的其他开支(不含进价)总计40万元.
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净利润最大,最大值是多少?
(3)该公司要求净利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为6米,山坡的坡角为30°. 小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF = 1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°(结果精确到0.1).

(1)求树AB与测角仪EF的水平距离DF的长;
(2)求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36, ≈1.73 )

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,菱形ABCD中,
(1)若半径为1的⊙O经过点A、B、D,且∠A=60°,求此时菱形的边长;
(2)若点P为AB上一点,把菱形ABCD沿过点P的直线a折叠,使点D落在BC边上,利用无刻度的直尺和圆规作出直线a.(保留作图痕迹,不必说明作法和理由)

查看答案和解析>>

科目: 来源: 题型:

【题目】(阅读材料)

平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3.

(解决问题)

(1)求点A(-2.4),B(+-)的勾股值[A],[B];

(2)若点Mx轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】摩拜单车公司调查无锡市民对其产品的了解情况,随机抽取部分市民进行问卷,结果分非常了解比较了解一般了解不了解四种类型,分别记为.根据调查结果绘制了如下尚不完整的统计图.

1)本次问卷共随机调查了 名市民,扇形统计图中 .

2)请根据数据信息补全条形统计图.

3扇形统计图中“D类型所对应的圆心角的度数是 .

4从这次接受调查的市民中随机抽查一个,恰好是不了解的概率是

查看答案和解析>>

同步练习册答案