科目: 来源: 题型:
【题目】如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A,B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.![]()
(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图1,a∥b,则∠1+∠2=
(2)如图2,AB∥CD,则∠1+∠2+∠3= ,并说明理由
(3)如图3,a∥b,则∠1+∠2+∠3+∠4=
(4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n= (直接写出你的结论,无需说明理由)![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在△ABC中,AB=AC=5,cos∠ABC=
,将△ABC绕点C顺时针旋转,得到△A1B1C.
(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;![]()
(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1 , 求线段EF1长度的最大值与最小值的差.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.![]()
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线AB,CD相交于点O,OA平分∠EOC.
![]()
(1)若∠EOC=70°,求∠BOD的度数;
(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB 和 CD 相交于点 O,∠C=∠COA,∠D=∠BOD.求证:AC∥BD.(补全下面的说理过程,并在括号内填上适当的理由)
![]()
证明:∵∠C=∠COA,∠D=∠BOD( )
又∠COA=∠BOD( )
∴∠C= .
∴AC∥BD.( )
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB>BC,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于
EF的长半径画弧,两弧交于点G;作射线AG交CD于点H.则下列结论:①AG平分∠DAB,②CH=
DH,③△ADH是等腰三角形,④S△ADH=
S四边形ABCH.
其中正确的有( )
![]()
A. ①②③ B. ①③④ C. ②④ D. ①③
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知直线
与x轴交于点
,与y轴交于点
,把直线
沿x轴的负方向平移6个单位得到直线
,直线
与x轴交于点C,与y轴交于点D,连接BC.
如图
,分别求出直线
和
的函数解析式;
如果点P是第一象限内直线
上一点,当四边形DCBP是平行四边形时,求点P的坐标;
如图
,如果点E是线段OC的中点,
,交直线
于点F,在y轴的正半轴上能否找到一点M,使
是等腰三角形?如果能,请求出所有符合条件的点M的坐标;如果不能,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC在直角坐标系中.
(1)若把△ABC向上平移2个单位,再向左平移1个单位得到△A1B1C1,画出△A1B1C1,并写出点A1,B1,C1的坐标;
(2)求△ABC的面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com