相关习题
 0  352239  352247  352253  352257  352263  352265  352269  352275  352277  352283  352289  352293  352295  352299  352305  352307  352313  352317  352319  352323  352325  352329  352331  352333  352334  352335  352337  352338  352339  352341  352343  352347  352349  352353  352355  352359  352365  352367  352373  352377  352379  352383  352389  352395  352397  352403  352407  352409  352415  352419  352425  352433  366461 

科目: 来源: 题型:

【题目】七年级进行法律知识竞赛,共有30道题,答对一道题得4分,不答或答错一道题扣2分.

(1)小红同学参加了竞赛,成绩是96分,请问小红在竞赛中答对了多少题?

(2)小明也参加了竞赛,考完后他说:“这次竟赛中我一定能拿到110分.”请问小明有没有可能拿到110分?试用方程的知识来说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平行四边形ABCD中,EFBCGHABEFGH的交点PBD上,则图中面积相等的平行四边形有(  )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目: 来源: 题型:

【题目】已知一次函数y=x+4的图象与二次函数y=ax(x﹣2)的图象相交于A(﹣1,b)和B,点P是线段AB上的动点(不与A、B重合),过点P作PC⊥x轴,与二次函数y=ax(x﹣2)的图象交于点C.

(1)求a、b的值
(2)求线段PC长的最大值;
(3)若△PAC为直角三角形,请直接写出点P的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】填空,完成下列说理过程

如图,已知点A,O,B在同一条直线上,OE平分∠BOC,∠DOE=90°

求证:OD是∠AOC的平分线;

证明:如图,因为OE是∠BOC的平分线,

所以∠BOE=∠COE.(  )

因为∠DOE=90°

所以∠DOC+∠  =90°

且∠DOA+∠BOE=180°﹣∠DOE=  °.

所以∠DOC+∠  =∠DOA+∠BOE.

所以∠  =∠  .

所以OD是∠AOC的平分线.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.

(1)判断直线AC与⊙O的位置关系,并说明理由;
(2)当BD=6,AB=10时,求⊙O的半径.

查看答案和解析>>

科目: 来源: 题型:

【题目】某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?

查看答案和解析>>

科目: 来源: 题型:

【题目】某校计划购买20张书柜和一批书架(书架不少于20),现从AB两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折.

1)若规定只能到其中一个超市购买所有物品,什么情况下到A超市购买合算?

2)若学校想购买20张书柜和100个书架,且可到两家超市自由选购.你认为至少要准备多少货款,请用计算的结果来验证你的说法.

查看答案和解析>>

科目: 来源: 题型:

【题目】为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买个甲种文具、个乙种文具共需花费元;购买个甲种文具、个乙种文具共需花费元.

1)求购买一个甲种文具、一个乙种文具各需多少元?

2)若学校计划购买这两种文具共个,投入资金不少于元又不多于元,设购买甲种文具个,求有多少种购买方案?

3)设学校投入资金元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】课本1.4有这样一道例题:
问题4:用一根长22cm的铁丝:
(1)能否围成面积是30cm2的矩形?
(2)能否围成面积是32cm2的矩形?
据此,一位同学提出问题:“用这根长22cm的铁丝能否围成面积最大的矩形?若能围成,求出面积最大值;若不能围成,请说明理由.”请你完成该同学提出的问题.

查看答案和解析>>

科目: 来源: 题型:

【题目】完成下面的证明:

已知:如图,点DEF分别在线段ABBCAC上,连接DEEFDM平分∠ADEEF于点M,∠1+2=180°.

求证: B =BED

证明:∵∠1+2=180°(已知),

又∵∠1+BEM=180°( ),

∴∠2=BEM   ),

DM_______________________________________________).

∴∠ADM =B_________________________________________),

MDE =BED_______________________________________).

又∵DM平分∠ADE (已知)

∴∠ADM =MDE ( )

∴∠B =BED(等量代换).

查看答案和解析>>

同步练习册答案