相关习题
 0  352393  352401  352407  352411  352417  352419  352423  352429  352431  352437  352443  352447  352449  352453  352459  352461  352467  352471  352473  352477  352479  352483  352485  352487  352488  352489  352491  352492  352493  352495  352497  352501  352503  352507  352509  352513  352519  352521  352527  352531  352533  352537  352543  352549  352551  352557  352561  352563  352569  352573  352579  352587  366461 

科目: 来源: 题型:

【题目】如图所示,在△ABC中,AB=AC,M、N分别是AB、AC的中点,D、E为BC上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为( )

A.1cm2
B.1.5cm2
C.2cm2
D.3cm2

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,如图,是直线,.平行吗?为什么?

解:,理由如下:

(已知)

(已知)

_________

(已知)

_________(等量代换)

查看答案和解析>>

科目: 来源: 题型:

【题目】某医药研究所开发一种新药,在做药效试验时发现,如果成人按规定剂量服用,那么服药后,每毫升血液中含药量y(μg)随时间t(h)的变化图象如图所示,根据图象回答:

(1)服药后几时血液中含药量最高?每毫升血液中含多少微克?

(2)在服药几时内,每毫升血液中含药量逐渐升高?在服药几时后,每毫升血液中含药量逐渐下降?

(3)服药后14 h时,每毫升血液中含药量是多少微克?

(4)如果每毫升血液中含药量为4微克及以上时,治疗疾病有效,那么有效时间为几时?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,将一副三角板的直角重合放置,其中∠A30°,∠CDE45°.

1)如图1,求∠EFB的度数;

2)若三角板ACB的位置保持不动,将三角板CDE绕其直角顶点C顺时针方向旋转.

①当旋转至如图2所示位置时,恰好CDAB,则∠ECB的度数为   

②若将三角板CDE继续绕点C旋转,直至回到图1位置.在这一过程中,是否还会存在△CDE其中一边与AB平行?如果存在,请你画出示意图,并直接写出相应的∠ECB的大小;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】“差之毫厘,失之千里”是一句描述开始时虽然相差很微小,结果会造成很大的误差或错误的成语.现实中就有这样的实例,如步枪在瞄准时的示意图如图,从眼睛到准星的距离OE为80cm,眼睛距离目标为200m,步枪上准星宽度AB为2mm,若射击时,由于抖动导致视线偏离了准星1mm,则目标偏离的距离为( )cm.

A.25
B.50
C.75
D.100

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读理解:

对于任意一个三位数正整数n,如果n的各个数位上的数字互不相同,且都不为零,那么称这个数为陌生数,将一个陌生数的三个数位上的数字交换顺序,可以得到5个不同的新陌生数,把这6个陌生数的和与111的商记为M(n).例如n=123,可以得到132.213.231.312.3215个新的陌生数,这6陌生数的和为123132213231312321=1332,因为,所以M(123)=12.

(1)计算:M(125)M(361)的值;

(2)st都是陌生数,其中42分别是s的十位和个位上的数字,25分别是t的百位和个位上的数字,且t的十位上的数字比s的百位上的数字小2;规定:.,则k的值是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,顶点为(2,﹣1)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,3),连接AB.

(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;
(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】某数学兴趣小组开展了一次活动,过程如下:如图1,等腰直角△ABC中,AB=AC,∠BAC=90°,小敏将三角板中含45°角的顶点放在A上,斜边从AB边开始绕点A逆时针旋转一个角α,其中三角板斜边所在的直线交直线BC于点D,直角边所在的直线交直线BC于点E.

(1)小敏在线段BC上取一点M,连接AM,旋转中发现:若AD平分∠BAM,则AE也平分∠MAC.请你证明小敏发现的结论;
(2)当0°<α≤45°时,小敏在旋转中还发现线段BD、CE、DE之间存在如下等量关系:BD2+CE2=DE2 . 同组的小颖和小亮随后想出了两种不同的方法进行解决:
小颖的想法:将△ABD沿AD所在的直线对折得到△ADF,连接EF(如图2);
小亮的想法:将△ABD绕点A逆时针旋转90°得到△ACG,连接EG(如图3);
请你从中任选一种方法进行证明.
(3)小敏继续旋转三角板,请你继续研究:当135°<α<180°时(如图4),等量BD2+CE2=DE2是否仍然成立?请作出判断,不需要证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整:收集数据:从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分)如下:

78

86

74

81

75

76

87

70

75

90

75

79

81

70

74

80

86

69

83

77

93

73

88

81

72

81

94

83

77

83

80

81

70

81

73

78

82

80

70

40

1)整理、描述数据:按如分数段整理、描述这两组样本数据(请补全表格):

0

0

1

11

7

1

__________

0

0

__________

__________

__________

(说明:成绩80分及以上为生产技能优秀,70-79分为生产技能良好,60-69分为生产技能合格,60分以下为生产技能不合格)

分析数据:两组样本数据的平均数、中位数、众数如表所示(请补全表格):

部门

平均数

中位数

众数

78.3

__________

75

78

80.5

__________

得出结论:

2)估计乙部门生产技能优秀的员工人数为__________

3)你认为__________部门员工的生产技能水平较高,说明理由(至少从两个不同的角度说明推断的合理性).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在一块正方形ABCD木板上要贴三种不同的墙纸,正方形EFCG部分贴A型墙纸,△ABE部分贴B型墙纸,其余部分贴C型墙纸.A型、B型、C型三种墙纸的单价分别为每平方米60元、80元、40元.

(1)探究1:如果木板边长为1米,FC= 米,则一块木板用墙纸的费用需元;
(2)探究2:如果木板边长为2米,正方形EFCG的边长为x米,一块木板需用墙纸的费用为y元,
①用含x的代数式表示y(写过程).
②如果一块木板需用墙纸的费用为225元,求正方形EFCG的边长为多少米?

查看答案和解析>>

同步练习册答案