相关习题
 0  352450  352458  352464  352468  352474  352476  352480  352486  352488  352494  352500  352504  352506  352510  352516  352518  352524  352528  352530  352534  352536  352540  352542  352544  352545  352546  352548  352549  352550  352552  352554  352558  352560  352564  352566  352570  352576  352578  352584  352588  352590  352594  352600  352606  352608  352614  352618  352620  352626  352630  352636  352644  366461 

科目: 来源: 题型:

【题目】平行四边形ABCD中,EF是对角线BD上的两点, 如果添加一个条件使ABE≌△CDF,则添加的条件不能是(  )

A. AE=CF B. BE=FD C. BF=DE D. ∠1=∠2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直角坐标系xOy中,△ABC的三个顶点坐标分别为A(-4,1)、B(-1,1)、C(-4,3).

(1)画出Rt△ABC关于原点O成中心对称的图形Rt△A1B1C1
(2)若Rt△ABC与Rt△A2BC2关于点B中心对称,则点A2的坐标为、C2的坐标为
(3)求点A绕点B旋转180°到点A2时,点A在运动过程中经过的路程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知矩形ABCDAB2BC,在CD上取点E,使AEEB,那么∠EBC等于(  )

A. 15°B. 30°C. 45°D. 60°

查看答案和解析>>

科目: 来源: 题型:

【题目】在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.

(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);
(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知 OACB 的顶点 OAB 的坐标分别是(0a)、(b0),且ab 满足 b

1)如图 1a= b= ,点 C 的坐标

2)如图 2,点 P 为边 OB 上一动点,将线段 AP P 点顺时针旋转 90° PD.当点 P O 运动到 B 的过程中,求点 D 运动路径的长度.

3)如图 3,在(2)的条件下,作等腰 Rt△BED,且∠DBE90°,再作等腰 Rt△ECF 且∠ECF90°,直线 FE 分别交 ACOB 于点 MN,求证:FMEN

查看答案和解析>>

科目: 来源: 题型:

【题目】1)如图 1,在 ABCD 中,ACBD 交于点 O,过点 O 的直线 l AB E CD F判断 OE OF 的数量关系: ,并证明;

S四边形AEFD S四边形CFEB (填“>” 或“=” 或“<”).

2)如图 2 是一块“L”形的材料,请你作一条直线 m,使得直线 m 两边的材料的面积相等(保留作图痕迹,不用证明).

3)如图 3,正方形 ABCD 的边长为 2cm,动点 PQ 分别从点 AC 同时出发,以 相同的速度分别沿 ADCB 向终点 DB 移动,当点 P 到达点 D 时,运动停止,过点 C CHPQ,垂足为点 H,连接 BH,则 BH 长的最小值为 cm(保留作图痕迹, 直接填写结果).

查看答案和解析>>

科目: 来源: 题型:

【题目】在如图所示的正方形网格中,每个小方格的边长 1,点 ABC 是格点.

1)计算:AB= BC= AC=

2)只用直尺(不带刻度)作出 AB 边上的高 CH(保留作图 痕迹)CH=

3)只用直尺(不带刻度)作出 AC 边上的高 BG(保留作图痕迹).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑧的直角顶点的坐标为.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,二次函数y=ax2+bx+c(a 0)的图象,有下列4个结论:①abc>0;②b>a+c;③4a+2b+c>0;④b2-4ac>0;其中正确的是

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在正方形 ABCD 中,E BC 的中点,F CD 上一点,且 CF CD

求证:(1)∠AEF90°

2 BAE=∠EAF

查看答案和解析>>

同步练习册答案