科目: 来源: 题型:
【题目】规定两数a,b之间的一种运算,记作(a,b):如果![]()
,那么(a,b)=c.
例如:因为23=8,所以(2,8)=3.
(1)根据上述规定,填空:
(3,27)=_______,(5,1)=_______,(2,![]()
)=_______.
(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:
设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n
所以3x=4,即(3,4)=x,
所以(3n,4n)=(3,4).
请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)
查看答案和解析>>
科目: 来源: 题型:
【题目】在某超市小明买了1千克甲种糖果和2千克乙种糖果,共付38元;小强买了2千克甲种糖果和0.5千克乙种糖果,共付27元.
(1)求该超市甲、乙两种糖果每千克各需多少元?
(2)某顾客到该超市购买甲、乙两种糖果共20千克混合,欲使总价不超过240元,问该顾客混合的糖果中甲种糖果最少多少千克?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.
(1)求证:AD=AG;
(2)AD与AG的位置关系如何,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,△ABC 中,∠CAB=90°,AC=AB,点 D、E 是 BC 上的两点,且∠DAE=45°,△ADC 与△ADF 关于直线AD 对称.
(1)求证:△AEF≌△AEB;
(2)求∠DFE 的度数.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】小张去书店购买图书,看好书店有A,B,C三种不同价格的图书,分别是A种图书每本1元,B种图书每本2元,C种图书每本5元.
(1)若小张同时购买A,C两种不同图书的6本,用去18元,求购买两种图书的本数;
(2)若小张同时购买两种不同的图书10本,用去18元,请你设计他的购书方案;
(3)若小张同时购进A,B,C三种不同图书10本,用去18元,请你设计他的购买方案.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,A、B坐标分别为A(O,a)、B(b,a),且a、b满足:
,现同时将点A、B分别向下平移3个单位,再向左平移1个单位,分别得到点A、B的对应点C、D,连接AC、BD、AB.
(1)求点C、D的坐标;
(2)在y轴上是否存在点M,连接MC、MD,使三角形MCD的面积为30?若存在这样的点,求出点M的坐标;若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PA、PO,当点P在BD上移动时(不与B、D重合),
的值是否发生变化,并说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.![]()
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,∠1=∠2,CF⊥AB,DE⊥AB,求证:FG∥BC.
![]()
证明:∵CF⊥AB,DE⊥AB (______)
∴∠BED=90°,∠BFC=90° (______)
∴∠BED=∠BFC (______)
∴ED∥FC (______)
∴∠1=∠BCF (______)
∵∠1=∠2 (______)
∴∠2=∠BCF (______)
∴FG∥BC (______)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,在△ABC 中,AB=AC,∠BAC=90°,D 是BC 上一点,EC⊥BC,EC=BD,DF=FE.
![]()
求证:(1)△ABD≌△ACE;
(2)AF⊥DE.
查看答案和解析>>
科目: 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,在斜边AB上分别截取AD=AC,BE=BC,DE=6,
点O是△CDE的外心,如图所示,则点O到△ABC的三边的距离之和是 . ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com