相关习题
 0  352605  352613  352619  352623  352629  352631  352635  352641  352643  352649  352655  352659  352661  352665  352671  352673  352679  352683  352685  352689  352691  352695  352697  352699  352700  352701  352703  352704  352705  352707  352709  352713  352715  352719  352721  352725  352731  352733  352739  352743  352745  352749  352755  352761  352763  352769  352773  352775  352781  352785  352791  352799  366461 

科目: 来源: 题型:

【题目】已知ADBCABCDE为射线BC上一点AE平分BAD

(1)如图1当点E在线段BC上时求证:BAE=BEA

(2)如图2当点E在线段BC延长线上时连接DEADE=3CDEAED=60°

求证ABC=ADC;

CED的度数

查看答案和解析>>

科目: 来源: 题型:

【题目】 图,在边长为3 cm的正方形ABCD中,点EBC边上的任意一点,AF⊥AEAFCD的延长线于F,则四边形AFCE的面积为_____cm2

查看答案和解析>>

科目: 来源: 题型:

【题目】2013年是一个让人记忆犹新的年份雾霾天气持续笼罩我国大部分地区口罩市场出现热销某旗舰网店用8000元购进甲、乙两种型号的口罩销售完后共获利2800元进价和售价如下表:

品名

价格

甲型口罩

乙型口罩

进价元/袋

20

25

售价元/袋

26

35

1求该网店购进甲、乙两种型号口罩各多少袋?

2该网店第二次以原价购进甲、乙两种型号口罩购进乙种型号口罩袋数不变而购进甲种型号口罩袋数是第一次的2倍甲种口罩按原售价出售而乙种口罩让利销售若两种型号的口罩都售完要使第二次销售活动获利不少于3680元乙种型号的口罩最低售价为每袋多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)= . 例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=
(Ⅰ)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.
求证:对任意一个完全平方数m,总有F(m)=1;
(Ⅱ)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;
(Ⅲ)在(2)所得“吉祥数”中,求F(t)的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC中,B=10°,ACB=20°,AB=4cmABC逆时针旋转一定角度后与ADE重合,且点C恰好成为AD的中点.

(1)指出旋转中心,并求出旋转的度数;

(2)求出BAE的度数和AE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC中,AD平分∠BAC,DE∥AC交AB于E,DFAB交AC于F,若AF=6,则四边形AEDF的周长是(   )

A. 24 B. 28 C. 32 D. 36

查看答案和解析>>

科目: 来源: 题型:

【题目】已知正方形ABCD,点F是射线DC上一动点(不与CD重合).连接AF并延长交直线BC于点E,交BDH,连接CH,过点CCGHCAE于点G

1)若点F在边CD上,如图1

①证明:∠DAH=DCH

②猜想:△GFC的形状并说明理由.

2)取DF中点M,连接MG.若MG=2.5,正方形边长为4,求BE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.
(1)计算:F(243),F(617);
(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k= ,当F(s)+F(t)=18时,求k的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在RtABC中,∠ACB90°,点D是边AB的中点,点E在边BC上,AEBE,点MAE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BCN

1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;

2)如图1,当点G和点MC不重合时,求证:DGDN

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.
(i)二次项系数2=1×2;
(ii)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;

1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5
(iii)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.
即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).
像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12=

查看答案和解析>>

同步练习册答案