相关习题
 0  352913  352921  352927  352931  352937  352939  352943  352949  352951  352957  352963  352967  352969  352973  352979  352981  352987  352991  352993  352997  352999  353003  353005  353007  353008  353009  353011  353012  353013  353015  353017  353021  353023  353027  353029  353033  353039  353041  353047  353051  353053  353057  353063  353069  353071  353077  353081  353083  353089  353093  353099  353107  366461 

科目: 来源: 题型:

【题目】某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BAx轴,AC是射线.

(1)当x30,求y与x之间的函数关系式;

(2)若小李4月份上网20小时,他应付多少元的上网费用?

(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC是等边三角形,ACE是等腰三角形,∠AEC120°AECEFBC中点,连接AE

1)直接写出∠BAE的度数为   

2)判断AFCE的位置关系,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】口袋中装有四个大小完全相同的小球,把它们分别标号1,2,3,4,从中随机摸出一个球,记下数字后放回,再从中随机摸出一个球,利用树状图或者表格求出两次摸到的小球数和等于4的概率.

【答案】 .

【解析】试题分析:

根据题意列表如下由表可以得到所有的等可能结果再求出所有结果中两次所摸到小球的数字之和为4的次数即可计算得到所求概率.

试题解析

列表如下:

1

2

3

4

1

(1,1)

(1,2)

(1,3)

(1,4)

2

(2,1)

(2,2)

(2,3)

(2,4)

3

(3,1)

(3,2)

(3,3)

(3,4)

4

(4,1)

(4,2)

(4,3)

(4,4)

由表可知,共有16种等可能事件,其中两次摸到的小球数字之和等于4的有(3,1)、(2,2)和(1,3),共计3

P(两次摸到小球的数字之和等于4=.

型】解答
束】
23

【题目】小亮同学想利用影长测量学校旗杆AB的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上BD处,另一部分在某一建筑的墙上CD处,分别测得其长度为9.6米和2米,求旗杆AB的高度.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了更好治理某湖水质,保护环境,市治污公司决定购买台污水处理设备.现有两种型号的设备,其中每台的价格,月处理污水量如下表.经调查:购买一台型设备比购买一台型设备多万元,购买型设备比购买型设备少万元.

价格(万元/台)

处理污水量(吨/月)

)求的值.

)经预算:市治污公司购买污水处理设备的资金不超过万元,你认为该公司有哪几种购买方案.

)在()问的条件下,若每月要求处理该湖的污水量不低于吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,矩形ABCD中,AB=16cmBC=6cm,点P从点A出发沿AB向点B移动(不与点AB重合),一直到达点B为止;同时,点Q从点C出发沿CD向点D移动(不与点CD重合).运动时间设为t秒.

1)若点PQ均以3cm/s的速度移动,则:AP=  cmQC=  cm.(用含t的代数式表示)

2)若点P3cm/s的速度移动,点Q2cm/s的速度移动,经过多长时间PD=PQ,使△DPQ为等腰三角形?

3)若点PQ均以3cm/s的速度移动,经过多长时间,四边形BPDQ为菱形?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC中,ADBC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.

若∠BAE=40°,求∠C的度数;

若△ABC周长13cm,AC=6cm,求DC长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,,点D在射线BC上,,则点D到斜边AB的距离等于_____________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,正方形ABCD中,MBC上一点,FAM的中点,EFAM,垂足为F,交AD的延长线于点E,交DC于点N

(1)求证:△ABM ∽△EFA

(2)若AB=12,BM=5,求DE的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠C90°,以A为圆心,任意长为半径画弧分别交ABAC于点MN,再分别以MN为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列结论:①AD是∠BAC的平分线;②若∠B30°,则DADB;③ABAC2:1;④点DAB的垂直平分线上.一定成立的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在等边ABC中,边长为6DBC边上的动点,∠EDF=60°

1)求证:BDE∽△CFD

2)当BD=1CF=3时,求BE的长.

查看答案和解析>>

同步练习册答案