科目: 来源: 题型:
【题目】如图(甲)是四边形纸片 ABCD,其中∠B=130°,∠D=50°.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(乙)所示,则∠C=_____.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB为直径的半⊙O 切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为( )
![]()
A.9 B.10 C.3
D.2![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示, P 是直线 l 外一点,点 A、B、C 在 l 上,且 PB l ,下列说法:① PA、PB、PC 这 3 条线段中, PB 最短;②点 P 到直线 l 的距离是线段 PB 的长;③线段 AB 的长是点 A 到 PB 的距离;④线段 PA 的长是点 P 到直线 l 的距离. 其中正确的是( )
![]()
A. ①②③B. ①②④C. ①③④D. ②③④
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠B=30°,点D从点B出发,沿B→C方向运动到点C(D不与B,C重合),连接AD,作∠ADE=30°,DE交线段AC于点E.设∠B4D=x°,∠AED=y°.
(1)当BD=AD时,求∠DAE的度数;
(2)求y与x的关系式;
(3)当BD=CE时,求x的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读下面材料:
小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求
的值.
小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).请回答:
的值为 .
参考小昊思考问题的方法,解决问题:
如图 3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3 .
(1)求
的值;
(2)若CD=2,则BP=__________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD⊥AD于D,CE⊥AD于E,交AB于点F,CE=10,BD=4,则DE的长为( )
![]()
A. 6B. 5C. 4D. 8
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连结BH.
(1)求证:AC=CD;
(2)若OB=2,求BH的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线y=kx+8(k<0)交y轴于点A,交x轴于点B.将△AOB关于直线AB翻折得到△APB.过点A作AC∥x轴交线段BP于点C,在AC上取点D,且点D在点C的右侧,连结BD.
![]()
(1)求证:AC=BC
(2)若AC=10.
①求直线AB的表达式.
②若△BCD是以BC为腰的等腰三角形,求AD的长.
(3)若BD平分∠OBP的外角,记△APC面积为S1,△BCD面积为S2,且
=
,则
的值为______(直接写出答案)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com