相关习题
 0  353366  353374  353380  353384  353390  353392  353396  353402  353404  353410  353416  353420  353422  353426  353432  353434  353440  353444  353446  353450  353452  353456  353458  353460  353461  353462  353464  353465  353466  353468  353470  353474  353476  353480  353482  353486  353492  353494  353500  353504  353506  353510  353516  353522  353524  353530  353534  353536  353542  353546  353552  353560  366461 

科目: 来源: 题型:

【题目】如图,△ABC面积为1,第一次操作:分别延长ABBCCA至点A1B1C1,使A1B=ABCB1=CBC1A=CA,顺次连接A1B1C1,得到△A1B1C1.第二次操作:分别延长A1B1B1C1C1A1至点A2B2C2,使A2B1=A1B1B2C1=B1C1C2A1=C1A1,顺次连接A2B2C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过100,最少经过(  )次操作.

A.3B.4C.5D.6

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂生产一种合金薄板(其厚度忽略不计)这些薄板的形状均为正方形,边长(单位:cm)在550之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,(即出厂价=基础价+浮动价其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长x成正比例,在营销过程中得到了表格中的数据,已知出厂一张边长为40cm的薄板,获得利润是26.(利润=出厂价-成本价)

薄板的边长(cm

20

30

出厂价(元/张)

50

70

(1)求一张薄板的出厂价y与边长x之间满足的函数关系式;

(2)求一张薄板的利润p与边长x之间的函数关系式;

(3)若一张薄板的利润是34元,且成本最低,此时薄板的边长为多少?当薄板的边长为多少时,所获利润最大,求出这个最大值。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在菱形中,,点是线段上一动点,点是线段上一动点,则的最小值(

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BCAC于点DE,过点DDF⊥AC,垂足为F,线段FDAB的延长线相交于点G

1)求证:DF⊙O的切线;

2)若CF=2DF=2,求图中阴影部分的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】等腰RtACB,∠ACB90°,ACBC,点AC分别在x轴、y轴的正半轴上.

1)如图1,求证:∠BCO=∠CAO

2)如图2,若OA5OC2,求B点的坐标

3)如图3,点C03),QA两点均在x轴上,且SCQA18.分别以ACCQ为腰在第一、第二象限作等腰RtCAN、等腰RtQCM,连接MNy轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠B=∠C,AB=10 cm,BC=8 cm,D为AB的中点,点P在线段上以3 cm/s的速度由点B向点C运动,同时,点Q在线段CA上以相同速度由点C向点A运动,一个点到达终点后另一个点也停止运动.当△BPD与△CQP全等时,求点P运动的时间.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,AB=CB,∠BAC=BCA,∠ABC=90°FAB延长线上一点,点EBC上,且AE=CF.

(1)求证:RtABE RtCBF

(2)求证:AECF

(3)若∠CAE=30°,求∠ACF度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC2.4米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.2米,看台最低点A与旗杆底端D之间的距离为15米(CAD在同一条直线上).

1)求看台最低点A到最高点B的坡面距离AB

2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩GH之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6cos37°≈0.8tan37°≈0.75sin33°≈0.54cos33°≈0.84tan33°≈0.65

查看答案和解析>>

科目: 来源: 题型:

【题目】随着教育信息化的发展,学生的学习方式日益增多. 教师为了指导学生有幸效利用网络进行学习,对学生进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题:

(1)本次接受问卷调查的学生共有 人;在扇形统计图中“D”选项所占的百分比为

(2)扇形统计图中,“B”选项所对应扇形圆心角为 度;

(3)请补全条形统计图;

(4)若该校共有1200名学生,请你估计该校学生课外利用网络学习的时间在“A”选项的有多少人?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,CAAB,垂足为 AAB=24,AC=12,射线 BMAB,垂足为 B, 一动点 E A点出发以 3 厘米/秒沿射线 AN 运动,点 D 为射线 BM 上一动点, 随着 E 点运动而运动,且始终保持 EDCB,当点 E 经过______秒时,△DEB 与△BCA 全等.

查看答案和解析>>

同步练习册答案