相关习题
 0  353422  353430  353436  353440  353446  353448  353452  353458  353460  353466  353472  353476  353478  353482  353488  353490  353496  353500  353502  353506  353508  353512  353514  353516  353517  353518  353520  353521  353522  353524  353526  353530  353532  353536  353538  353542  353548  353550  353556  353560  353562  353566  353572  353578  353580  353586  353590  353592  353598  353602  353608  353616  366461 

科目: 来源: 题型:

【题目】为宣传66日世界海洋日,某校九年级举行了主题为珍惜海洋资源,保护海洋生物多样性的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表

组别

分数/

频数

10

14

18

请根据图表信息解答以下问题:

1)本次调查一共随机抽取了________个参赛学生的成绩,表1________

2)所抽取的参赛学生的成绩的中位数落在的组别________

3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为(  )

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知ABC中,AB=AC=10cmBC=8cm,点DAB的中点.

(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1s后,BPDCQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPDCQP全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC三边运动,求经过多长时间点P与点Q第一次在ABC的哪条边上相遇?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,锐角△ABC的两条高BECD相交于点O,且OBOCA=60°.

(1)求证:△ABC是等边三角形;

(2)判断点O是否在∠BAC的平分线上,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】俄罗斯足球世界杯点燃了同学们对足球运动的热情,某学校划购买甲、乙两种品牌的足球供学生使用.已知用1000 元购买甲种足球的数量和用1600元购买乙种足球的数量相同,甲种足球的单价比乙种足球的单价少30元.

1)求甲、乙两种品牌的足球的单价各是多少元?

2)学枝准备一次性购买甲、乙两种品牌的足球共25个,但总费用不超过1610元,那么这所学校最多购买多少个乙种品牌的足球?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣),点D在x轴上,且点D在点A的右侧.

(1)求菱形ABCD的周长;

(2)若M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当M与AD相切,且切点为AD的中点时,连接AC,求t的值及MAC的度数;

(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.

【答案】1菱形的周长为8;(2t=MAC=105°(3)当t=1﹣或t=1+时,圆M与AC相切.

【解析】试题分析:1)过点BBEAD,垂足为E.由点A和点B的坐标可知:BE=AE=1,依据勾股定理可求得AB的长,从而可求得菱形的周长;(2)记 Mx轴的切线为FAD的中点为E.先求得EF的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点BBEAD,垂足为E,连接MFF MAD的切点.由特殊锐角三角函数值可求得∠EAB=60°,依据菱形的性质可得到∠FAC=60°,然后证明AFM是等腰直角三角形,从而可得到∠MAF的度数,故此可求得∠MAC的度数;(3)如图4所示:连接AM,过点作MNAC,垂足为N,作MEAD,垂足为E.先求得∠MAE=30°,依据特殊锐角三角函数值可得到AE的长,然后依据3t+2t=5-AE可求得t的值;如图5所示:连接AM,过点作MNAC,垂足为N,作MEAD,垂足为E.依据菱形的性质和切线长定理可求得∠MAE=60°,然后依据特殊锐角三角函数值可得到EA=,最后依据3t+2t=5+AE.列方程求解即可.

试题解析:( 如图1所示:过点,垂足为

∵四边形为菱形,

∴菱形的周长

)如图2所示,⊙轴的切线为 中点为

,且中点,

解得

平移的图形如图3所示:过点

垂足为,连接 为⊙切点,

∵由()可知,

∵四边形是菱形,

切线,

的中点,

是等腰直角三角形,

)如图4所示:连接,过点作,垂足为,作,垂足为

∵四边形为菱形,

是圆的切线

如图5所示:连接,过点作,垂足为,作,垂足为

∵四边形为菱形,

是圆的切线,

综上所述,当时,圆相切.

点睛:此题是一道圆的综合题.圆中的方法规律总结:1、分类讨论思想:研究点、直线和圆的位置关系时,就要从不同的位置关系去考虑,即要全面揭示点、直线和元的各种可能的位置关系.这种位置关系的考虑与分析要用到分类讨论思想.1、转化思想:(1)化“曲面”为“平面”(2)化不规则图形面积为规则图形的面积求解.3方程思想:再与圆有关的计算题中,除了直接运用公式进行计算外,有时根据图形的特点,列方程解答,思路清楚,过程简捷.

型】解答
束】
28

【题目】如图1,在平面直角坐标系中,直线lx轴、y轴分别交于点B40)、C03),点Ax轴负半轴上一点,AMBC于点My轴于点N0 ).已知抛物线y=ax2+bx+c经过点ABC

(1)求抛物线的函数式;

2)连接AC,点D在线段BC上方的抛物线上,连接DCDB,若BCDABC面积满足SBCD= SABC 求点D的坐标;

(3)如图2,EOB中点,设F为线段BC上一点(不含端点),连接EF.一动点PE出发,沿线段EF以每秒3个单位的速度运动到F,再沿着线段PC以每秒5个单位的速度运动到C后停止.若点P在整个运动过程中用时最少,请直接写出最少时间和此时点F的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,⊙与菱形在平面直角坐标系中,点的坐标为的坐标为,点的坐标为,点轴上,且点在点的右侧.

)求菱形的周长.

)若⊙沿轴向右以每秒个单位长度的速度平移,菱形沿轴向左以每秒个单位长度的速度平移,设菱形移动的时间为(秒),当⊙相切,且切点为的中点时,连接,求的值及的度数.

)在()的条件下,当点所在的直线的距离为时,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.

(1)原来每小时处理污水量是多少m2

(2)若用新设备处理污水960m3,需要多长时间?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,每个小正方形的边长都相等,三角形ABC的三个顶点都在格点(小正方形的顶点)上.

1)平移三角形ABC,使顶点A平移到点D的位置,得到三角形DEF,请在图中画出三角形DEF;(注:点B的对应点为点E

2)若∠A50°,则直线AC与直线DE相交所得锐角的度数为   °,依据是   

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB是⊙O的切线.

(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.

(3)(3分)在(2)的条件下,设⊙O的半径为3,求AB的长.

查看答案和解析>>

同步练习册答案