科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线
与x轴交于B(-3,0)、C(1,0)两点,与y轴交于点A(0,2),抛物线的顶点为D.连接AB,点E是第二象限内的抛物线上的一动点,过点E作EP⊥BC于点P,交线段AB于点F.
(1)求此抛物线的解析式;
(2)过点E作EG⊥AB于点G,Q为线段AC的中点,当△EGF周长最大时,在
轴上找一点R,使得|RE-RQ|值最大,请求出R点的坐标及|RE-RQ|的最大值;
![]()
(3)在(2)的条件下,将△PED绕E点旋转得△ED′P′,当△AP′P是以AP为直角边的直角三角形时,求点P′的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某初中要调查学校学生(总数 1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得 到的数据分别制成频数直方图(如图 1)和扇形统计图(如图 2).
![]()
(1)请补全上述统计图(直接填在图中);
(2) 试确定这个样本的中位数和众数;
(3)请估计该学校 1000 名学生双休日课外阅读时间不少于 4 小时的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AC 是ABCD 的一条对角线,BE⊥AC,DF⊥AC,垂足分别为 E,F.
![]()
(1)求证:△ADF≌△CBE;
(2)求证:四边形 DFBE 是平行四边形.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于
MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D. 下列结论:①AD是∠BAC的平分线;②点D在AB的垂直平分线上;③∠ADC=60°;④
。其中正确的结论有( )
![]()
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读材料:
关于
的方程:
的解为:
, ![]()
(可变形为
)的解为:
, ![]()
的解为:
, ![]()
的解为:
, ![]()
…………
根据以上材料解答下列问题:
(1)①方程
的解为 .
②方程
的解为 .
(2)解关于
方程:
①
(
)
②
(
)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一个正方形内两个相邻正方形的面积分别为 4 和 2,它们都有两个顶点在大正方形的边 上且组成的图形为轴对称图形,则图中阴影部分的面积为______.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形ABCD为矩形,连接BD,AB=2AD,点E在AB边上,连接ED.
(1)若∠ADE=30°,DE=6,求△BDE的面积;
(2)延长CB至点F使得BF=2AD,连接FE并延长交AD于点M,过点A作AN⊥EM于点N,连接BN,求证:FN=AN+
BN.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】根据数轴和绝对值的知识回答下列问题
![]()
(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。
例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.
(2) 数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为_____________.
(3) 当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在一个长方形操场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径为r米,广场的长为a米,宽为b米.
(1)请列式表示操场空地的面积;
(2)若休闲广场的长为 50米,宽为20米,圆形花坛的半径为 3米,求操场空地的面积.(π取 3.14,计算结果保留 0.1)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知点A(a,0),B(b,3),C(4,0),且满足
+(a﹣b+6)2=0,线段AB交y轴于点F,点D是y轴正半轴上的一点.
(1)求出点A,B的坐标;
(2)如图2,若DB∥AC,∠BAC=a,且AM,DM分别平分∠CAB,∠ODB,求∠AMD的度数;(用含a的代数式表示).
(3)如图3,坐标轴上是否存在一点P,使得△ABP的面积和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com