科目: 来源: 题型:
【题目】如图,在直角坐标系中,
的直角边AC在x轴上,
,反比例函数
的图象经过BC边的中点
.
求这个反比例函数的表达式;
若
与
成中心对称,且
的边FG在y轴的正半轴上,点E在这个函数的图象上.
求OF的长;
连接
,证明四边形ABEF是正方形.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形 ACDE 是证明勾股定理时用到的一个图形,a 、b 、c 是 RtABC和 RtBED 的边长,已知
,这时我们把关于 x 的形如
二次方程称为“勾系一元二次方程”.
![]()
请解决下列问题:
(1)写出一个“勾系一元二次方程”;
(2)求证:关于 x 的“勾系一元二次方程”
,必有实数根;
(3)若 x 1是“勾系一元二次方程”
的一个根,且四边形 ACDE 的周长是6
,求ABC 的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2018次输出的结果为________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在数轴上有三个点A,B,C,回答下列问题:
(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?
(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;
(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】平面直角坐标系中,我们把横坐标、纵坐标都是整数的点称为整点
如图,直线
和反比例函数
的图象交于
两点,则落在图中阴影部分
不包含边界
内的整点个数有
个.
![]()
A. 2
B. 3
C. 4
D. 5
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)已知∠AOB=25°42′,则∠AOB的余角为 ,∠AOB的补角为 ;
(2)已知∠AOB=α,∠BOC=β,OM平分∠AOB,ON平分∠BOC,用含α,β的代数式表示∠MON的大小;
(3)如图,若线段OA与OB分别为同一钟表上某一时刻的时针与分针,且∠AOB=25°,则经过多少时间后,△AOB的面积第一次达到最大值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:点A是双曲线
在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为一边作等边三角形ABC,点C在第四象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,墙对面有一个2m宽的门,另三边用竹篱笆围成,篱笆总长33m.围成长方形的养鸡场除门之外四周不能有空隙.
(1)若墙长为18m,要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?
(2)围成养鸡场的面积能否达到200m2?请说明理由
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃.
![]()
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
查看答案和解析>>
科目: 来源: 题型:
【题目】余姚某特产专卖店销售核桃,其进价为每千克40元,按每千克60元销售,平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,则平均每天的销量可增加10千克.(销售利润=销售价—进价)
(1)如果每千克核桃降价
元,那么每千克核桃的销售利润为________元,平均每天可销售_________千克;(用含
的代数式表示)
(2)若该专卖店销售这种核桃想要平均每天获利2240元,每千克核桃应降价多少元?
(3)在(2)条件下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折销售?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com