科目: 来源: 题型:
【题目】(1)(学习心得)
小刚同学在学习完“圆”这一章内容后,感觉到一些几何问题,如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.
例如:如图
,在
中,
,
,
是
外一点,且
,求
的度数,若以点
为圆心,
为半径作辅助圆⊙
,则点
、
必在⊙
上,
是⊙
的圆心角,而
是圆周角,从而可容易得到
__________
.
(2)(问题解决)
如图
,在四边形
中,
,
,求
的度数.
小刚同学认为用添加辅助圆的方法,可以使问题快速解决,他是这样思考的:
的外接圆就是以
的中点为圆心,
长为半径的圆;
的外接圆也是以
的中点为圆心,
长为半径的圆.这样
、
、
、
四点在同一个圆上,进而可以利用圆周角的性质求出
的度数,请运用小刚的思路解决这个问题.
(3)(问题拓展)
如图
,在
中,
,
是
边上的高,且
,
,求
的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰△ABC中,AB=AC,BD为腰AC上的高.
(1)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1,h2.
A、若M在线段BC上,请你结合图形①证明:h1+h2=h;
B、当点M在BC的延长线上时,h1,h2,h之间的关系为 .(请直接写出结论,不必证明)
(2)如图②,在平面直角坐标系中有两条直线l1:y=
x+6;l2:y=﹣3x+6.若l2上的一点M到l1的距离是2,请你利用以上结论求解点M的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于2100元,则第二批衬衫每件至少要售多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在
中,
.
![]()
(1)先作
的平分线交
边于点
,再以点
为圆心,
长为半径作⊙
.
(要求:尺规作图,保留作图痕迹,不写作法)
(2)请你判断(1)中
与⊙
的位置关系,并证明你的结论.
(3)若
,
,求出(1)中⊙
的半径.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AE是∠BAC的角平分线,交BC于点E,DE∥AB交AC于点D.
(1)求证AD=ED;
(2)若AC=AB,DE=3,求AC的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在正方形网格中,每一个小正方形的边长为1.△ABC的三个顶点都在格点上,A、C的坐标分别是(﹣4,6),(﹣1,4).
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出△ABC向右平移6个单位的△A1B1C1,并写出C1的坐标 ;
(3)请画出△ABC关于原点O对称的△A2B2C2 , 并写出点C2的坐标 .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:
![]()
(1)在这次调查中,一共抽取了 名学生,α= %;
(2)补全条形统计图;
(3)扇形统计图中C级对应的圆心角为 度;
(4)若该校共有2000名学生,请你估计该校D级学生有多少名?
查看答案和解析>>
科目: 来源: 题型:
【题目】某网上书城“五一·劳动节”期间在特定的书目中举办特价促销活动,有A、B、C、D四本书是小明比较中意的,但是他只打算选购两本,求下列事件的概率:
(1)小明购买A书,再从其余三本书中随机选一款,恰好选中C的概率是_________;
(2)小明随机选取两本书,请用树状图或列表法求出他恰好选中A、C两本的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】在学习绝对值后,我们知道,
表示数
在数轴上的对应点与原点的距离. 如:
表示5在数轴上的对应点到原点的距离.而
,即
表示5、0在数轴上对应的两点之间的距离.类似的,有:
表示5、3在数轴上对应的两点之间的距离;
,所以
表示5、
在数轴上对应的两点之间的距离. 一般地,点A、B在数轴上分别表示有理数
、
,那么A、B之间的距离可表示为
.
请根据绝对值的意义并结合数轴解答下列问题:
(1)数轴上表示2和5的两点之间的距离是______;数轴上表示1和-3的两点之间的距离是 ;
(2)数轴上P、Q两点的距离为3,且点P表示的数是2,则点Q表示的数是___________.
(3)点A、B、C在数轴上分别表示有理数
、
、1,那么A到B的距离与A到C的距离之和可表示为 ;
(4)满足
的整数
的值为 .
(5)
的最小值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com