科目: 来源: 题型:
【题目】某校九年级学生在一节体育课中,选一组学生进行投篮比赛,每人投10次,汇总投进球数的情况进行统计分析,绘制了如下不完整的统计表和统计图.
次数 | 10 | 8 | 6 | 5 |
人数 | 3 | a | 2 | 1 |
(1)表中a= ;
(2)请将条形统计图补充完整;
(3)从小组成员中选一名学生参加校动会投篮比赛,投进10球的成员被选中的概率为多少?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5
(1)求3⊕(﹣2)的值;
(2)若3⊕x的值小于16,求x的取值范围,并在数轴上表示出来.
查看答案和解析>>
科目: 来源: 题型:
【题目】在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.
![]()
(1)仿照图1,在图2中补全
的“竖式”;
(2)仿照图1,用“列竖式”的方法计算一个十位数字是
的两位数的平方,过程部分如图3所示,则这个两位数为 (用含
的代数式表示).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为
,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
![]()
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得
≌
即可得
,则可证得
为
的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得
利用勾股定理即可求得
的长,又由OE∥AB,证得
根据相似三角形的对应边成比例,即可求得
的长,然后利用三角函数的知识,求得
与
的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
![]()
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为![]()
![]()
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)如图1,求证:KE=GE;
(2)如图2,连接CABG,若∠FGB=
∠ACH,求证:CA∥FE;
(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=
,AK=
,求CN的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,…,照此规律排列下去,则第8个图中小正方形的个数是( )
![]()
A. 48B. 63C. 80D. 99
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数
与x轴交于点A,与y轴交于点B.将△AOB沿过点B的直线折叠,使点O落在AB边上的点D处,折痕交x轴于点E.
(1)求直线BE的解析式;
(2)求点D的坐标;
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】观察下列两个等式:2
=2×
+1,5
=5×
+1,给出定义如下:我们称使等式ab=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,
),(5,
),都是“共生有理数对”.
(1)判断数对(2,1),(3,
)是不是“共生有理数对”,写出过程;
(2)若(a,3)是“共生有理数对”,求a的值;
(3)若(m,n)是“共生有理数对”,则(n,m)“共生有理数对”(填“是”或“不是”);说明理由;
(4)请再写出一对符合条件的“共生有理数对”为(注意:不能与题目中已有的“共生有理数对”重复).
查看答案和解析>>
科目: 来源: 题型:
【题目】在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合),通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于点E,延长EG 交CD于点F.如图①,当点H与点C重合时,易证得FG=FD(不要求证明);如图②,当点H为边CD上任意一点时,求证:FG=FD.
【应用】在图②中,已知AB=5,BE=3,则FD= ,△EFC的面积为 .(直接写结果)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com