科目: 来源: 题型:
【题目】在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为( )
A. 3 B. 5 C. 3或5 D. 3或6
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】由于受到手机更新换代的影响,某手机店经销的甲型号手机二月份售价比一月份售价每台降价500元.如果卖出相同数量的甲型号手机,那么一月份销售额为9万元,二月份销售额只有8万元.
(1)一月份甲型号手机每台售价为多少元?
(2)为了提高利润,该店计划三月份加入乙型号手机销售,已知甲型号每台进价为3500元,乙型号每台进价为4000元,预计用不多于7.6万元且不少于7.4万元的资金购进这两种手机共20台,请问有几种进货方案?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在数轴上
点表示数
,
点表示数
,
点表示数
,已知数
是最小的正整数,且
、
满足
.
![]()
(1)
,
,
;
(2)若将数轴折叠,使得点
与点
重合,则点
与数 表示的点重合;
(3)点
、
、
开始在数轴上运动,若点
以每秒1个单位长度的速度向左运动,同时,点
和点
分别以每秒2个单位长度和4个单位长度的速度向右运动,假设
秒钟过后,若点
与点
之间的距离表示为
,点
与点
之间的距离表示为
,点
与点
之间的距离表示为
,求
、
、
的长(用含
的式子表示);
(4)在(3)的条件下,
的值是否随着时间
的变化而改变?若改变,请说明理由;若不变,请求其值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,直线y=kx+2与x轴正半轴相交于A(t,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A和点B,点C在第三象象限内,且AC⊥AB,tan∠ACB=
.
(1)当t=1时,求抛物线的表达式;
(2)试用含t的代数式表示点C的坐标;
(3)如果点C在这条抛物线的对称轴上,求t的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,
的顶点均在格点上,点
的坐标为
.
![]()
①把
向上平移5个单位后得到对应的
,画出
,并写出
的坐标;
②以原点
为对称中心,画出
与关于原点
对称的
,并写出点
的坐标.
③以原点O为旋转中心,画出把
顺时针旋转90°的图形△A3B3C3,并写出C3的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,O为原点,点A(1,0),点B(0,
),把△ABO绕点O顺时针旋转,得A′B′O,记旋转角为α.
(Ⅰ)如图①,当α=30°时,求点B′的坐标;
(Ⅱ)设直线AA′与直线BB′相交于点M.
如图②,当α=90°时,求点M的坐标;
②点C(﹣1,0),求线段CM长度的最小值.(直接写出结果即可)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%.经试销发现,销售量P(件)与销售单价x(元)符合一次函数关系,当销售单价为65元时销售量为55件,当销售单价为75元时销售量为45件.
(Ⅰ)求P与x的函数关系式;
(Ⅱ)若该商场获得利润为y元,试写出利润y与销售单价x之间的关系式;
(Ⅲ)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】分别用
,
,
,
表示有理数,
是最小的正整数,
是最大的负整数,
是绝对值最小的有理数,
是数轴上到原点距离为
的点表示的数;
(1)直接写出
,
,
,
的值;
(2)求
的倒数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com