相关习题
 0  355111  355119  355125  355129  355135  355137  355141  355147  355149  355155  355161  355165  355167  355171  355177  355179  355185  355189  355191  355195  355197  355201  355203  355205  355206  355207  355209  355210  355211  355213  355215  355219  355221  355225  355227  355231  355237  355239  355245  355249  355251  355255  355261  355267  355269  355275  355279  355281  355287  355291  355297  355305  366461 

科目: 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图ORt△ABC斜边AB上一点OA为半径的OBC相切于点DAC相交于点EAB相交于点F连接AD

1求证AD平分BAC

2若点E为弧AD的中点探究线段BDCD之间的数量关系并证明你的结论

3若点E为弧AD的中点CD=求弧DF与线段BDBF所围成的阴影部分的面积

查看答案和解析>>

科目: 来源: 题型:

【题目】把长为20,宽为a的长方形纸片(10a20),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的长方形为正方形,则操作停止.当n=3时,a的值为________.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,矩形OABC摆放在平面直角坐标系中,点Ax轴上,点Cy轴上,OA3OC2,过点A的直线交矩形OABC的边BC于点P,且点P不与点BC重合,过点P作∠CPD=∠APBPDx轴于点D,交y轴于点E

(1)若△APD为等腰直角三角形.

求直线AP的函数解析式;

x轴上另有一点G的坐标为(20),请在直线APy轴上分别找一点MN,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值.

(2)如图2,过点EEFAPx轴于点F,若以APEF为顶点的四边形是平行四边形,求直线PE的解析式.

查看答案和解析>>

科目: 来源: 题型:

【题目】为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?

查看答案和解析>>

科目: 来源: 题型:

【题目】为了有效地落实国家精准扶贫政策,切实关爱贫困家庭学生.某校对全校各班贫困家庭学生的人数情况进行了调查.发现每个班级都有贫困家庭学生,经统计班上贫困家庭学生人数分别有1名、2名、3名、5名,共四种情况,并将其制成了如下两幅不完整的统计图:

(1)填空:a = b=

(2)求这所学校平均每班贫困学生人数;

(3)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表或画树状图的方法,求出被选中的两名学生来自同一班级的概率.

贫困学生人数

班级数

1

5

2

2

3

a

5

1

查看答案和解析>>

科目: 来源: 题型:

【题目】由几个相同的边长为1的小立方块搭成的几何体的俯视图如下图,格中的数字表示该位置的小立方块的个数.

(1)请在下面方格纸中分别画出这个向何体的主视图和左视图.

(2)根据三视图;这个组合几何体的表面积为 _________ 个平方单位.(包括底面积)

(3)若上述小立方块搭成的几何体的俯视图不变,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大是为 _________ 个平方单位.(包括底面积)

查看答案和解析>>

科目: 来源: 题型:

【题目】计算:

1)(-12-5+-14--39 2

35(a2bab2)(ab23a2b) 4(用简便方法计算)

查看答案和解析>>

科目: 来源: 题型:

【题目】对于三个数a,b,c,M{a,b,c}表示这三个数的平均数min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.

查看答案和解析>>

科目: 来源: 题型:

【题目】列方程解应用题

甲、乙两人同时从相距25千米的A地去B 甲骑车乙步行甲的速度是乙的速度的3倍甲到达B地停留40分钟然后从B地返回A地在途中遇见乙这时距他们出发的时间恰好3小时求两人的速度各是多少?

查看答案和解析>>

同步练习册答案