相关习题
 0  355214  355222  355228  355232  355238  355240  355244  355250  355252  355258  355264  355268  355270  355274  355280  355282  355288  355292  355294  355298  355300  355304  355306  355308  355309  355310  355312  355313  355314  355316  355318  355322  355324  355328  355330  355334  355340  355342  355348  355352  355354  355358  355364  355370  355372  355378  355382  355384  355390  355394  355400  355408  366461 

科目: 来源: 题型:

【题目】如图1,直线AB∥CD,直线EFAB于点E,交CD于点F,点G和点H分别是直线ABCD上的动点,作直线GHEI平分∠AEFHI平分∠CHGEIHI交于点I.

1)如图,点G在点E的左侧,点H在点F的右侧,若∠AEF=70°,∠CHG=60°,求∠ETH的度数.

2)如图,点G在点E的右侧,点H也在点F的右侧,若∠AEF=,∠CHG=β,其他条件不变,求∠ETH的度数.

3)如图,点G在点E的右侧,点H也在点F的右侧,∠GHC的平分线HJ交∠KEG的平分线EJ于点J.其他条件不变,若∠AEF=,∠CHG=β,求∠EJH的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】绿色出行是相对环保的出行方式,通过碳减排和碳中和实现环境资源的可持续利用和交通可持续发展.汽车工业的发展为人类带来了快捷和方便,但同时,汽车的发展也引起了能源的消耗和空气的污染.并且已成为全国各大城市的第一大污染源。实验中学为了解全校学生的交通方式,责成该校七年级(1班)的4位同学对该校部分学生进行了随机调查,按“骑自行车”、“乘公交车”、“步行”、“乘私家车”、“其他方式”设置选项.要求被调查的所有学生从中选一项,并将调查结果绘制成了条形统计图1和扇形统计图2.根据所提供的信息,解答下列问题.

(1)本次调查的人数共有___________人,扇形中步行的圆心角度度数为________.

(2)把条形统计图补充完整.

(3)若该校共有学生3000人,则全校步行的学生大约有多少人数?

(4)根据调查结果对学生的环保出行提一条合理化的建议.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,O外的一点D 在直线AB上.

(1)若AC=,OB=BD.

①求证:CD是⊙O的切线.

②阴影部分的面积是   .(结果保留π)

(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A-25),B-3,3),C12),点Pm,n)是三角形ABC内任意一点,三角形经过平移后得到三角形A1B1C1,点P的对应点为P1m+6,n-2).

1)直接写出平移后点A1B1C1的坐标分别为

2)画出三角形ABC平移后的三角形A1B1C1

查看答案和解析>>

科目: 来源: 题型:

【题目】矩形与矩形如图放置,点共线,共线,连接,取的中点,连接,若,则

A. B. C. 2D.

查看答案和解析>>

科目: 来源: 题型:

【题目】青岛、大连两个城市各有机床12台和6台,现将这些机床运往海南10台和厦门8台,每台费用如表一:

问题1:如表二,假设从青岛运往海南台机床,并且从青岛、大连运往海南机床共花费36万元,求青岛运往海南机床台数.

问题2:在问题1的基础上,问从青岛、大连运往海南、厦门的总费用为多少万元?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,P为正方形ABCD的边BC上一动点(PBC不重合),连接AP,过点BBQAPCD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′BA的延长线于点M

(1)试探究APBQ的数量关系,并证明你的结论;

(2)AB=3BP=2PC,求QM的长;

查看答案和解析>>

科目: 来源: 题型:

【题目】A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的st的关系.

(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?

(2)汽车B的速度是多少?

(3)求L1,L2分别表示的两辆汽车的st的关系式.

(4)2小时后,两车相距多少千米?

(5)行驶多长时间后,A、B两车相遇?

查看答案和解析>>

科目: 来源: 题型:

【题目】下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象回答下列问题:

(1)体育场离张强家_____千米;

(2)体育场离文具店_____千米,张强在文具店停留了_____分;

(3)张强从文具店回家的平均速度是________千米/分

查看答案和解析>>

同步练习册答案