科目: 来源: 题型:
【题目】如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?
(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】为了丰富课外活动,某校将购买一些乒乓球拍和乒乓球,某商场销售一种乒乓球拍和乒乓球,乒乓球拍每副定价80元,乒乓球每盒定价20元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.
方案一:买一副乒乓球拍送一盒乒乓球;
方案二:乒乓球拍和乒乓球都按定价的90%付款.
某校要到该商场购买乒乓球拍20副,乒乓球
盒(
>20且为整数).
(1)若按方案一购买,需付款 元(用含
的整式表示,要化简); 若按方案二购买,需付款 元(用含
的整式表示,要化简).
(2)若
30,通过计算说明此时按哪种方案购买较为合算?
(3)当
30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.
![]()
(1)求证:△ABE≌△CDF;
(2)若AC与BD交于点O,求证:AO=CO.
查看答案和解析>>
科目: 来源: 题型:
【题目】现定义运算:对于任意有理数a、b,都有a
b=ab-b,如:2
3=2×3-3,请根据以上定义解答下列各题:
(1) 2
(-3)=___________,x
(-2)=___________;
(2) 化简:[(-x)
3]
(-2);
(3) 若x
=3
(-x),求x的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,铁路上A,B两点相距25 km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15 km,CB=10 km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:
(1)甲先出发______小时后,乙才出发;大约在甲出发______小时后,两人相遇,这时他们离A地_______千米.
(2)两人的行驶速度分别是多少?
(3)分别写出表示甲、乙的路程y(千米)与时间x(小时)之间的函数表达式(不要求写出自变量的取值范围).
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6,AD=8,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )
![]()
A. 8B. 9C. 10D. 2![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(2011贵州安顺,17,4分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,矩形
摆放在平面直角坐标系中,点
在
轴上,点
在
轴上,
,
,过点
的直线交矩形
的边
于点
,且点
不与点
、
重合,过点
作
,
交
轴于点
,交
轴于点
.
![]()
(Ⅰ)若
为等腰直角三角形.
①直接写出此时
点的坐标:______;直线
的解析式为______;
②在
轴上另有一点
的坐标为
,请在直线
和
轴上分别找一点
、
,使
的周长最小,并求出此时点
的坐标和
周长的最小值.
(Ⅱ)如图2,过点
作
交
轴于点
,若以
、
、
、
为顶点的四边形是平行四边形,求直线
的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com