科目: 来源: 题型:
【题目】阅读下列材料,完成任务:
自相似图形
定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.
任务:
(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为 ;
(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为 ;
(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).
请从下列A、B两题中任选一条作答:我选择 题.
A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);
②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);
B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);
②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:
(1)乙车的速度是 千米/时,t= 小时;
(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;
(3)直接写出乙车出发多长时间两车相距120千米.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某学校为了解七年级学生足球运球的掌握情况,随机抽取部分七年级学生足球运球的测试成绩作为一个样本,接
,
,
,
四个等级进行统计,制成了如下不完整的统计图.
根据所给信息,解答以下问题:
(1)求一共抽取了多少名七年级学生的测试成绩?
(2)扇形统计图中
对应的扇形圆心角为 度(直接填空):
(3)直接在图中补全条形统计图.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是BA延长线上一点,CD切⊙O于点D,弦DE∥CB,Q是AB上的一点,CA=1,CD=
OA.
(1)求⊙O的半径R;
(2)求图中阴影部分的面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图在平面直角坐标系中,已知点A(0,2
),△AOB为等边三角形,P是x轴负半轴上一个动点(不与原点O重合),以线段AP为一边在其右侧作等边三角形△APQ.
(1)求点B的坐标;
(2)在点P的运动过程中,∠ABQ的大小是否发生改变?如不改变,求出其大小:如改变,请说明理由;
(3)连接OQ,当OQ∥AB时,求P点的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点
是直线
上一点,
,
,
平分
.
求
的度数.
![]()
解:∵点
是直线
上一点(已知),
(已知),∴
(平角的定义)
.
∵
平分
(已知),∴
(角平分线的定义)
![]()
.
∵
(已知),
∴
.
.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们用a表示不大于 a 的最大整数,用 a 表示大于 a 的最小整数.例如:2.5 2 ,3 3 , 2.5 3 ;<2.5> 3 ,<4> 5 ,< 1.5> 1 .解决下列问题:
(1) 4.5 ,< 3.5> .
(2)若x 2 ,则 < x> 的取值范围是 ;若< y > 1,则 y 的取值范围是 .
(3)已知 x, y 满足方程组
;求 x, y 的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知正比例函数y=2x与反比例函数y=
(k>0)的图象交于A、B两点,且点A的横坐标为4,
(1)求k的值;
(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;
(3)过原点O的另一条直线l交双曲线y=
(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面内,点
是直线
上一点,
,射线
不动,射线
,
同时开始绕点
顺时针转动,射线
首次回到起始位置时两线同时停止转动,射线
,
的转动速度分别为每秒
和每秒
.若转动
秒时,射线
,
,
中的一条是另外两条组成角的角平分线,则
______秒.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com