科目: 来源: 题型:
【题目】如图,点
为线段
上一点,点
为
的中点,且
,
.
![]()
(1)图中共有______条线段,分别是______;
(2)求线段
的长;
(3)若点
在直线
上,且
,求线段
的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在
中,点
是
边上的一个动点,过点
作直线
,设
交
的角平分线于点
,交
的外角平分线于点
.
(1)求证:
;
(2)当点
运动到何处时,四边形
是矩形?并证明你的结论.
(3)当点
运动到何处,且
满足什么条件时,四边形
是正方形?并说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点A(-2,2),B(8,12)在抛物线y=ax2+bx上.
(1)求抛物线的解析式;
(2)如图1,点F的坐标为(0,m)(m>4),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H,设抛物线与x轴的正半轴交于点E,连接FH、AE,求
之值(用含m的代数式表示);
(3)如图2,直线AB分别交x轴、y轴于C、D两点,点P从点C出发,沿射线CD方向匀速运动,速度为每秒
个单位长度,同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度,点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=3PM,求t的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图 .在数轴.上有
两个点(点
在点
的左侧) , ![]()
![]()
(1)如果点
表示的数是
,那么,
①点
表示的数是_______.
②如果点
从点
出发,沿数轴正方向运动,速度是每秒3个单位长度,运动秒后,点
表示的数是_______.( 用含
的代数式表示) ; 经过________秒 ,
.
(2)如果点
表示的数是
,将数轴的负半轴绕原点
顺时针旋转60° ,得到
,如图2所示,射线
从
出发绕点
顺时针旋转,速度是每秒15° ,同时,射线
从
出发绕点
逆时针旋转,速度是每秒5° .设运动时间为
秒,当
秒时,
停止运动.
①当
为________秒时,
与
重合.
②当
时,
的值是________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某市在城中村改造中,需要种植
、
两种不同的树苗共
棵,经招标,承包商以
万元的报价中标承包了这项工程,根据调查及相关资料表明,
、
两种树苗的成本价及成活率如表:
品种 | 购买价(元/棵) | 成活率 |
|
|
|
|
|
|
设种植
种树苗
棵,承包商获得的利润为
元.
(
)求
与
之间的函数关系式.
(
)政府要求栽植这批树苗的成活率不低于![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某汽车出发前油箱内有油42L,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量Q(L)与行驶时间t(h)之间的函数关系如图所示.
![]()
(1)汽车行驶 h后加油,加油量为 L;
(2)求加油前油箱剩余油量Q与行驶时间t之间的函数关系式;
(3)如果加油站离目的地还有200km,车速为40km/h,请直接写出汽车到达目的地时,油箱中还有多少汽油?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在平面直角坐标系中,将ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为_____.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】北国超市销售每台进价分别为400元、350元的
两种型号的豆浆机.下表是近两周的销售情况:
销售数量:
销售时段 | 销售数量 | 销售收入 | |
|
| ||
第一周 | 3台 | 5台 | 3500元 |
第二周 | 4台 | 10台 | 6000元 |
(进价、售价均保持不变,利润=销售收入-进价)
(1)求
两种型号的豆浆机的销售单价;
(2 )若第三周该超市采购这两种型号的豆浆机共20台, 并且B型号的台数比A型号的台数的2倍少1 ,如果这20台豆浆机全部售出,求这周销售的利润;
(3)若恰好用8000元采购这两种型号的豆浆机,问有哪几种进货方案? ( 要求两种型号都要采购)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:点
在同一条直线上,点
为线段
的中点,点
为线段
的中点.
(1)如图1 ,当点
在线段
上时.
①若
,则线段
的长为_______.
②若点
为线段
上任意一点,
,则线段
的长为_______. ( 用含
的代数式表示)
![]()
(2)如图2 ,当点
不在线段
上时,若
,求
的长(用含
的代数式表示) .
![]()
(3)如图,已知
,作射线
,若射线
平分
,射线
平分
.
①当射线
在
的内部时,则
=________°.
②当射线
在
的外部时,则
=_______°. ( 用含
的代数式表示) .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】【问题背景】
如图①所示,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
【类比研究】
如图②所示,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合).
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;
(2)△DEF是否为正三角形?请说明理由;
(3)连结AE,若AF=DF,AB=7,求△DEF的边长.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com