科目: 来源: 题型:
【题目】如图,已知∠xOy=90°,线段AB=10,若点A在Oy上滑动,点B随着线段AB在射线Ox上滑动(A,B与O不重合),Rt△AOB的内切圆☉K分别与OA,OB,AB切于点E,F,P.
(1)在上述变化过程中,Rt△AOB的周长,☉K的半径,△AOB外接圆半径,这几个量中不会发生变化的是什么?并简要说明理由.
(2)当AE=4时,求☉K的半径r.
(3)当Rt△AOB的面积为S,AE为x,试求S与x之间的函数关系,并求出S最大时直角边OA的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:
①四边形AECF为平行四边形;
②∠PBA=∠APQ;
③△FPC为等腰三角形;
④△APB≌△EPC.
其中正确结论的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】随着经济的快速发展,环境问题越来越受到人们的关注.某校学生会为了了解垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两幅统计图.
(1)求:本次被调查的学生有多少名?补全条形统计图.
(2)估计该校1200名学生中“非常了解”与“了解”的人数和是多少.
(3)被调查的“非常了解”的学生中有2名男生,其余为女生,从中随机抽取2人在全校做垃圾分类知识交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为( )
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目: 来源: 题型:
【题目】请阅读下述材料:
下述形式的繁分数叫做有限连分数,其中n是自然数,a0是整数,a1,a2,a3,…,an是正整数:
其中称为部分商。
按照以下方式可将任何一个分数转化为连分数的形式:,则;考虑的倒数,有,从而;再考虑的倒数,有,于是得到a的连分数展开式,它有4个部分商:3,1,3,3;
可利用连分数来求二元一次不定方程的特殊解,以为例,首先将写成连分数的形式,如上所示;其次,数部分商的个数,本例是偶数个部分商(奇数情况请见下例);最后计算倒数第二个渐近分数,从而是一个特解。
考虑不定方程,先将写成连分数的形式:。
注意到此连分数有奇数个部分商,将之改写为偶数个部分商的形式:
计算倒数第二个渐近分数:,所以是的一个特解。
对于分式,有类似的连分式的概念,利用将分数展开为连分数的方法,可以将分式展开为连分式。例如的连分式展开式如下,它有3个部分商: ;
再例如,,它有4个部分商:1,。
请阅读上述材料,利用所讲述的方法,解决下述两个问题
(1)找出两个关于x的多项式p和q,使得。
(2)找出两个关于x的多项式u和v,使得。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知ED为☉O的直径且ED=4,点A(不与点E,D重合)为☉O上一个动点,线段AB经过点E,且EA=EB,F为☉O上一点,∠FEB=90°,BF的延长线交AD的延长线于点C.
(1)求证:△EFB≌△ADE;
(2)当点A在☉O上移动时,直接回答四边形FCDE的最大面积为多少.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E.
(1)若∠A=25°,求的度数;
(2)若BC=9,AC=12,求BD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如果一个正整数能写成的形式(其中a,b均为自然数),则称之为婆罗摩笈多数,比如7和31均是婆罗摩笈多数,因为7=22+3×12,31=22+3×32。
(1)请证明:28和217都是婆罗摩笈多数。
(2)请证明:任何两个婆罗摩笈多数的乘积依旧是婆罗摩笈多数。
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:
在△ABC中,AB=9,AC=5,求BC边上的中线AD的取值范围。
小明在组内经过合作交流,得到了如下的解决方法(如图1):
①延长AD到Q,使得DQ=AD;
②再连接BQ,把AB、AC、2AD集中在△ABQ中;
③利用三角形的三边关系可得4<AQ<14,则AD的取值范围是_____________。
感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,构造全等三角形,把分散的己知条件和所求证的结论集中到同一个三角形中。
(2)请你写出图1中AC与BQ的位置关系并证明。
(3)思考:已知,如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°。试探究线段AD与EF的数量和位置关系并加以证明。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com