相关习题
 0  356707  356715  356721  356725  356731  356733  356737  356743  356745  356751  356757  356761  356763  356767  356773  356775  356781  356785  356787  356791  356793  356797  356799  356801  356802  356803  356805  356806  356807  356809  356811  356815  356817  356821  356823  356827  356833  356835  356841  356845  356847  356851  356857  356863  356865  356871  356875  356877  356883  356887  356893  356901  366461 

科目: 来源: 题型:

【题目】如图已知xOy=90°,线段AB=10,若点AOy上滑动B随着线段AB在射线Ox上滑动(A,BO不重合),RtAOB的内切圆K分别与OA,OB,AB切于点E,F,P.

(1)在上述变化过程中,RtAOB的周长K的半径AOB外接圆半径这几个量中不会发生变化的是什么?并简要说明理由.

(2)AE=4K的半径r.

(3)RtAOB的面积为S,AEx,试求Sx之间的函数关系并求出S最大时直角边OA的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形ABCD中,EAB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长APCDF点,连结CP并延长CPADQ点.给出以下结论:

①四边形AECF为平行四边形;

②∠PBA=APQ;

③△FPC为等腰三角形;

④△APB≌△EPC.

其中正确结论的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】随着经济的快速发展,环境问题越来越受到人们的关注.某校学生会为了了解垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为非常了解”“了解”“了解较少”“不了解四类,并将调查结果绘制成下面两幅统计图.

1)求:本次被调查的学生有多少名?补全条形统计图.

2)估计该校1200名学生中非常了解了解的人数和是多少.

3)被调查的非常了解的学生中有2名男生,其余为女生,从中随机抽取2人在全校做垃圾分类知识交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为(  )

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

科目: 来源: 题型:

【题目】请阅读下述材料:

下述形式的繁分数叫做有限连分数,其中n是自然数,a0是整数,a1a2a3,…,an是正整数:

其中称为部分商。

按照以下方式可将任何一个分数转化为连分数的形式:,则;考虑的倒数,有,从而;再考虑的倒数,有,于是得到a的连分数展开式,它有4个部分商:3133

可利用连分数来求二元一次不定方程的特殊解,以为例,首先将写成连分数的形式,如上所示;其次,数部分商的个数,本例是偶数个部分商(奇数情况请见下例);最后计算倒数第二个渐近分数,从而是一个特解。

考虑不定方程,先将写成连分数的形式:

注意到此连分数有奇数个部分商,将之改写为偶数个部分商的形式:

计算倒数第二个渐近分数:,所以的一个特解。

对于分式,有类似的连分式的概念,利用将分数展开为连分数的方法,可以将分式展开为连分式。例如的连分式展开式如下,它有3个部分商:

再例如,,它有4个部分商:1

请阅读上述材料,利用所讲述的方法,解决下述两个问题

1)找出两个关于x的多项式pq,使得

2)找出两个关于x的多项式uv,使得

查看答案和解析>>

科目: 来源: 题型:

【题目】如图已知EDO的直径且ED=4,A(不与点E,D重合)O上一个动点线段AB经过点E,EA=EB,FO上一点FEB=90°,BF的延长线交AD的延长线于点C.

(1)求证:EFB≌△ADE;

(2)当点AO上移动时直接回答四边形FCDE的最大面积为多少.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图ABCC=90°,以点C为圆心,BC为半径的圆交AB于点D,AC于点E.

(1)A=25°,的度数

(2)BC=9,AC=12,BD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如果一个正整数能写成的形式(其中ab均为自然数),则称之为婆罗摩笈多数,比如731均是婆罗摩笈多数,因为7223×1231223×32

1)请证明:28217都是婆罗摩笈多数。

2)请证明:任何两个婆罗摩笈多数的乘积依旧是婆罗摩笈多数。

查看答案和解析>>

科目: 来源: 题型:

【题目】1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:

在△ABC中,AB9AC5,求BC边上的中线AD的取值范围。

小明在组内经过合作交流,得到了如下的解决方法(如图1):

①延长ADQ,使得DQAD

②再连接BQ,把ABAC2AD集中在△ABQ中;

③利用三角形的三边关系可得4<AQ<14,则AD的取值范围是_____________

感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,构造全等三角形,把分散的己知条件和所求证的结论集中到同一个三角形中。

2)请你写出图1ACBQ的位置关系并证明。

3)思考:已知,如图2AD是△ABC的中线,ABAEACAF,∠BAE=∠FAC90°。试探究线段ADEF的数量和位置关系并加以证明。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形是边长为1的正方形,轴正半轴的夹角为15°,点在抛物线的图象上,则的值为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案