相关习题
 0  356730  356738  356744  356748  356754  356756  356760  356766  356768  356774  356780  356784  356786  356790  356796  356798  356804  356808  356810  356814  356816  356820  356822  356824  356825  356826  356828  356829  356830  356832  356834  356838  356840  356844  356846  356850  356856  356858  356864  356868  356870  356874  356880  356886  356888  356894  356898  356900  356906  356910  356916  356924  366461 

科目: 来源: 题型:

【题目】如图,在ABC中,ADBC边上的高,AEBC边上的中线,∠C=45°,sinB=, AD=4.

(1)求BC的长;

(2)求tanDAE的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,等边△ABC的周长是12DAC边上的中点,点EBC边的延长线上,如果DE=DB,那么CE的长是_______.

查看答案和解析>>

科目: 来源: 题型:

【题目】马航MH370 客机“失联”,我国“海巡01号”前往搜寻。如图某天上午9时,“海巡01号” 轮船位于A处,观测到某小岛P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到小岛P位于该船的南偏西30°方向,求此时轮船所处位置B与小岛P的距离?(精确到0.1)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C处的高度为200米,点A、B、C在同一直线上,则AB两点间的距离是________米(结果保留根号).

查看答案和解析>>

科目: 来源: 题型:

【题目】某地下车库出口处安装了“两段式栏杆”,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图所示的位置,其中ABBCEFBC,∠AEF=135°,AB=AE=1.3米,那么适合该地下车库的车辆限高标志牌为(栏杆宽度忽略不计.参考数据:≈1.4)(  )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某水渠的横断面是等腰梯形,已知其斜坡AD的坡度为1:1.2,斜坡BC的坡度为1:0.8,现测得放水前的水面宽EF3.8米,当水闸放水后,水渠内水面宽GH6米.则放水后水面上升的高度是(  )米.

A. 1.2 B. 1.1 C. 0.8 D. 2.2

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:OE平分,点ABC分别是射线OMOEON上的动点BC不与点O重合,连接AC交射线OE于点

如图1,若,则

的度数是______;

时,______;当时,______.

如图2,若,则是否存在这样的x的值,使得中有两个相等的角?若存在,求出x的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读材料:

我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式的最小值.方法如下:

解:

,得

∴代数式的最小值是4.

请根据上述材料,解决下列问题:

(1)求代数式的最小值.

(2)用配方法求代数式的最值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知a,b,c是△ABC的三边长,且满足a2+2ab=c2+2bc,试判断这个三角形的形状.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,∠BAC=20°,∠ABC=30°.

1)画出BC边上的高AD和角平分线AE

2)求∠EAD的度数.

查看答案和解析>>

同步练习册答案