科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(1,0),且∠B=60°,点P为斜边OB上的一个动点,则PA+PC的最小值为_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图(1),已知:在等腰直角三角形中,,直线经过点,直线,直线,垂足分别为点、.则、和之间的数量关系是: .
(2)如图(2),将(1)中的条件改为:在等腰三角形中,、、三点都在直线上,且,其中为任意锐角或钝角.请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),、是直线上的两动点(、、三点互不重合),点为平分线上的一点,且和均为等边三角形,连接、,若,求证:.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知和都是等腰三角形,,,.
(初步感知)(1)特殊情形:如图①,若点,分别在边,上,则__________.(填>、<或=)
(2)发现证明:如图②,将图①中的绕点旋转,当点在外部,点在内部时,求证:.
(深入研究)(3)如图③,和都是等边三角形,点,,在同一条直线上,则的度数为__________;线段,之间的数量关系为__________.
(4)如图④,和都是等腰直角三角形,,点、、在同一直线上,为中边上的高,则的度数为__________;线段,,之间的数量关系为__________.
(拓展提升)(5)如图⑤,和都是等腰直角三角形,,将绕点逆时针旋转,连结、.当,时,在旋转过程中,与的面积和的最大值为__________.
查看答案和解析>>
科目: 来源: 题型:
【题目】某篮球运动员去年共参加40场比赛,其中3分球的命中率为0.25,平均每场有12次3分球未投中.
(1)该运动员去年的比赛中共投中多少个3分球?
(2)在其中的一场比赛中,该运动员3分球共出手20次,小亮说,该运动员这场比赛中一定投中了5个3分球,你认为小亮的说法正确吗?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】小明站在池塘边的点处,池塘的对面(小明的正北方向)处有一棵小树,他想知道这棵树距离他有多远,于是他向正东方向走了12步到达电线杆旁,接着再往前走了12步,到达处,然后他改向正南方向继续行走,当小明看到电线杆、小树与自己现处的位置在一条直线上时,他共走了60步.
(1)根据题意,画出示意图(写出作图步骤);
(2)如果小明一步大约40 ,估算出小明在点处时小树与他的距离为多少米,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】儿童节期间,某公园游戏场举行一场活动.有一种游戏的规则是:在一个装有8个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个海宝玩具.已知参加这种游戏的儿童有40 000人,公园游戏场发放海宝玩具8 000个.
(1)求参加此次活动得到海宝玩具的频率?
(2)请你估计袋中白球的数量接近多少个?
查看答案和解析>>
科目: 来源: 题型:
【题目】直角三角形中,,直线过点.
(1)当时,如图①,分别过点、作于点,于点.求证:.
(2)当,时,如图②,点与点关于直线对称,连接、,动点从点出发,以每秒1个单位长度的速度沿边向终点运动,同时动点从点出发,以每秒3个单位的速度沿向终点运动,点、到达相应的终点时停止运动,过点作于点,过点作于点,设运动时间为秒.
①用含的代数式表示.
②直接写出当与全等时的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列实验中,概率最大的是【 】
A. 抛掷一枚质地均匀的硬币,出现正面;
B. 抛掷一枚质地均匀的正方体骰子(六个面分别刻有数字1到6),掷出的点数为奇数;
C. 在一副洗匀的扑克(背面朝上)中任取一张,恰好为方块;
D. 三张同样的纸片,分别写有数字2,3,4,和匀后背面朝上,任取一张恰好为偶数
查看答案和解析>>
科目: 来源: 题型:
【题目】小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员:月销售件数100件,月总收入2400元;营业员:月销售件数150件,月总收入2700元;假设营业员的月基本工资为元,销售每件服装奖励元.
(1)求、的值.
(2)若某营业员的月总收入不低于3200元,则她当月至少要卖出服装多少件?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com