科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(-5,0),且,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.
(1)求A、C两点的坐标;
(2)连接PA,用含t的代数式表示△POA的面积;
(3)当P在线段BO上运动时,在y轴上是否存在点Q,使△POQ与△AOC全等?若存在,请求出t的值并直接写出Q点坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①是某公共汽车线路收支差额y(票价总收入减去运营成本)与乘客量x的函数图象,目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会,乘客代表认为:公交公司应降低运营成本,实现扭亏,公交公司认为:运营成本难以下降,提高票价才能扭亏根据这两种意见,把图①分别改画成图②和图③.则下列判断不合理的是( )
A. 图①中点A的实际意义是公交公司运营后亏损1万元
B. 图①中点B的实际意义是乘客量为1.5万时公交公司收支平衡
C. 图②能反映公交公司意见
D. 图③能反映乘客意见
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图所示的平面直角坐标系中,已知点A(﹣3,﹣3),点B(﹣1,﹣3),点C(﹣1,﹣1).
(1)画出△ABC;
(2)画出△ABC关于x轴对称的△A1B1C1,并写出A1点的坐标: ;
(3)以O为位似中心,在第一象限内把△ABC扩大到原来的两倍,得到△A2B2C2,并写出A2点的坐标: .
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB于点N.
(1)求证:四边形BMDN是平行四边形;
(2)已知AF=12,EM=5,求AN的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动.
(1)请在的网格纸图2中画出运动时间t为2秒时的线段PQ并求其长度;
(2)在动点P、Q运动的过程中,△PQB能否成为PQ=BQ的等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由;
(3)在(1)中的图2中,点E如图所示,是否在PQ上存在一点M,使DM+EM的值最小,如存在,求出DM+EM最小值;如不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:A(0,1),B(2,0),C(4,3)
(1)在平面直角坐标系中描出点A,B,C,并画△ABC;
(2)将△ABC向左平移3个单位后再向下平移2个单位,得到△A1B1C1,请在平面直角坐标系中画出△A1B1C1;
(3)求△A1B1C1的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知正方体纸盒的表面积为12cm2;
(1)求正方体的棱长;
(2)剪去盖子后,插入一根长为5cm的细木棒,则细木棒露在外面的最短长度是多少?
(3)一只蚂蚁在纸盒的表面由A爬到B,求蚂蚁行走的最短路线.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N把线段分割成AM、MN、NB,若,,,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知M、N是线段AB的勾股分割点,且AM为直角边,若AB=12,AM=5,求BN的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=8,BC=6,点D为AC边上的动点,点D从点C出发,沿边CA向点A运动,当运动到点A时停止,若设点D运动的时间为t秒.点D运动的速度为每秒1个单位长度.
(1)当t=2时,CD= , AD= ;
(2)求当t为何值时,△CBD是直角三角形,说明理由;
(3)求当t为何值时,△CBD是以BD或CD为底的等腰三角形?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com