科目: 来源: 题型:
【题目】如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD恰好与边AB平行.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四个结论中成立的是( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】在探索三角形全等的条件时,老师给出了定长线段,且长度为的边所对的角为 小明和小亮按照所给条件分别画出了图1中的三角形,他们把两个三角形重合在一起(如图2),其中发现它们不全等,但他们对该图形产生了浓厚兴趣,并进行了进一步的探究:
(1)当时(如图2),小明测得,请根据小明的测量结果,求的大小;
(2)当时,将沿翻折,得到(如图3),小明和小亮发现的大小与角度有关,请找出它们的关系,并说明理由;
(3)如图4,在(2)问的基础上,过点作的垂线,垂足为点,延长到点,使得,连接,请判断的形状,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,已知∠AOB和一条定长线段a,在∠AOB内找一点P,使点P到OA,OB的距离都等于a,作法如下:
①在∠AOB内作OB的垂线段NH,使NH=a,H为垂足;②过N作NM∥OB;③作∠AOB的平分线OP,与NM交于点P;④点P即为所求.其中③的依据是( )
A. 平行线之间的距离处处相等 B. 角的内部到角的两边的距离相等的点在角的平分线上
C. 角的平分线上的点到角的两边的距离相等 D. 线段垂直平分线上的点到线段两端点的距离相等
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形ABCD中,AC,BD为对角线,AB=BC=AC=BD,则∠ADC的大小为( )
A. 120°B. 135°C. 145°D. 150°
查看答案和解析>>
科目: 来源: 题型:
【题目】.在△AOB中∠AOB=,OA=OB=10,分别以OA、OB所在直线为坐标轴建立平面直角坐标系(如图所示).点P自点A出发沿线段AB匀速运动到点B停止,同时点D自原点O出发沿x轴正方向匀速运动,在点P、D运动的过程中,始终满足PO=PD,过点O、D向AB作垂线,垂足分别为点C、E,设OD的长为x.
(1)求AP的长(用含x的代数式表示)
(2)在点P、D的运动过程中,线段PC与DE是否相等?若相等,请给予证明;若不相等,请说明理由;
(3)设以点P、O、D、E为顶点的四边形的面积为y,请直接写出y与x的函数关系式,并写出自变量的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.
小明同学探究的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,
他的结论是 (直接写结论,不需证明);
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的二分之一,上述结论是否仍然成立,并说明理由.
(3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市政府为响应党中央建设社会主义新农村和节约型社会的号召,决定资助部分农村地区修建一批沼气池,使农民用到经济.环保的沼气能源.红星村共有360户村民,村里得到34万元的政府资助款,准备再从各户筹集一部分资金修建A型.B型沼气池共20个,两种型号沼气池每个修建费用,可供使用的户数.修建用地情况见下表:
沼气池 | 维修费用 (万元/个) | 可供使用户数 (户/个) | 占地面积 (平方米/个) |
A型 | 3 | 20 | 24 |
B型 | 2 | 15 | 19 |
政府土地部分只批给该沼气池修建用地450平方米,
(1)试问有哪几种满足以上要求的修建方案?
(2)平均每村民筹集500元钱,能否满足所需费用最少的修建方案?
(3)在(2)问下,若每个A型沼气池可不需维修使用8年,每年可节省能源费1200元,每个B型沼气池可不需维修使用7年,每年可节省能源消费700元.两种沼气池使用寿命到期后,每个需投资1000元维修,可继续使用相同时间,村民最快多少年后可收回投资?
查看答案和解析>>
科目: 来源: 题型:
【题目】成都和西安两地之间的铁路交通设有高铁列车和普快列车两种车次,某天一辆普快从西安出发匀速驶向成都,同时另一辆高铁从成都出发匀速驶向西安,两车与成都的距离(千米)与行驶时间t(时)之间的关系如图所示.
t | 0 | 1 | 2 | 4 | … |
S1 | 666 | 546 | 426 | 186 | … |
(1)西安与成都的距离为______千米,普通快车到达成都所用时间为_______小时;
(2)求高铁从成都到西安的距离与之间的关系式;
(3)在成都、西安两地之间有一条隧道,高铁经过这条隧道时,两车相距74千米,求西安与这条隧道之间的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com