科目: 来源: 题型:
【题目】如图,一段抛物线:
,记为
,它与x轴交于点O,
;将
绕点
旋转
得
,交x轴于点
;将
绕点
旋转
得
,交x轴于点
;
如此进行下去,得到一“波浪线”,若点
在此“波浪线”上,则m的值为
![]()
![]()
A. 4 B.
C.
D. 6
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知二次函数
c为常数
的图象经过点
,点
,顶点为点M,过点A作
轴,交y轴于点D,交该二次函数图象于点B,连结BC.
求该二次函数的解析式及点M的坐标.
过该二次函数图象上一点P作y轴的平行线,交
一边于点Q,是否存在点P,使得以点P、Q、C、O为顶点的四边形为平行四边形,若存在,求出P点坐标;若不存在,说明理由.
点N是射线CA上的动点,若点M、C、N所构成的三角形与
相似,请直接写出所有点N的坐标
直接写出结果,不必写解答过程
.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(初步探索)
截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.
(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系;
![]()
(灵活运用)
(2)如图2,△ABC为等边三角形,直线a∥AB,D为BC边上一点,∠ADE交直线a于点E,且∠ADE=60°.求证:CD+CE=CA;
![]()
(延伸拓展)
(3)如图3,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角三角形△ABC中,AB=3,BC=4,AC=5
(1)在图①中画一直线将△ABC分割成两个等腰三角形;
(2)现有一点P与Q在△ABC的边上运动,请在备用图上画出△APQ有一边为2的等腰三角形的四种情况.
要求:1、用有刻度的直尺简单作图,并在所画等腰三角形中边长为2的边上标注数字2即可,2即为线段BC长度的一半;2、形状一样的算一种图形.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知△ABC与△CEF均为等腰直角三角形,∠ABC=∠CFE=90°,连接AE,点G是AE中点,连接BG和GF.
(1)如图1,当△CEF中E、F落在BC、AC边上时,探究FG与BG的关系;
(2)如图2,当△CEF中F落在BC边上时,探究FG与BG的关系.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】四边形ABCD是一个长方形,将AD沿某一直线AF(F为折痕与CD边的交点)折叠,使点D落在BC边上的某一点E处,请用没有刻度的直尺与圆规找出点E与折痕AF,并在折痕AF上找一点P满足BP+EP最小.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(本题满分12分)在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为
的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.
(1)小明发现
,请你帮他说明理由.
![]()
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
![]()
(3)如图3,若小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△
与△
面积之和的最大值,并简要说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,A、B两点的坐标分别为(﹣2,2)、(1,8).
![]()
(1)求三角形ABO的面积;
(2)若y轴上有一点M,且三角形MAB的面积为10,求M点的坐标;
(3)如图,把直线AB以每秒2个单位的速度向右平移,问经过多少秒后,该直线与y轴交于点(0,﹣2)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com