相关习题
 0  357341  357349  357355  357359  357365  357367  357371  357377  357379  357385  357391  357395  357397  357401  357407  357409  357415  357419  357421  357425  357427  357431  357433  357435  357436  357437  357439  357440  357441  357443  357445  357449  357451  357455  357457  357461  357467  357469  357475  357479  357481  357485  357491  357497  357499  357505  357509  357511  357517  357521  357527  357535  366461 

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,过点B60)的直线AB与直线OA相交于点A42),动点N沿路线O→A→C运动.

1)求直线AB的解析式.

2)求OAC的面积.

3)当ONC的面积是OAC面积的时,求出这时点N的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,长方形ABCD中,PAD上一动点,连接BP,过点ABP的垂线,垂足为F,交BD于点E,交CD于点G.

(1)当AB=AD,且PAD的中点时,求证:AG=BP;

(2)在(1)的条件下,求的值;

(3)类比探究:若AB=3AD,AD=2AP,的值为  .(直接填答案)

查看答案和解析>>

科目: 来源: 题型:

【题目】在一条公路上顺次有A、B、C三地,甲、乙两车同时从A地出发,分别匀速前往B地、C地,甲车到达B地停留一段时间后原速原路返回,乙车到达C地后立即原速原路返回,乙车比甲车早1小时返回A地,甲、乙两车各自行驶的路程y(千米)与时间x(时)(从两车出发时开始计时)之间的函数图象如图所示.

(1)甲车到达B地停留的时长为   小时.

(2)求甲车返回A地途中yx之间的函数关系式.

(3)直接写出两车在途中相遇时x的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学为了解学生到校交通方式情况,随机抽取各年级部分学生就“上下学交通方式”进行问卷调查,调查分为“A:骑自行车;B:步行;C:坐公交车;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图①)和部分扇形统计图(如图②),请根据图中的信息,解答下列问题.

(1)本次调查共抽取 名学生;

(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;

(3)若该中学共有学生3000人,估计有多少学生在上下学交通方式中选择坐公交车?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,lA,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.

(1)B出发时与A相距  千米.

(2)B出发后  小时与A相遇.

(3)B走了一段路后,自行车发生故障,进行 修理,所用的时间是  小时.

(4)若B的自行车不发生故障,保持出发时的速度前进,  小时与A相遇,相遇点离B的出发点  千米.在图中表示出这个相遇点C.

(5)求出A行走的路程S与时间t的函数关系式.(写出过程)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一个商人要建一个矩形的仓库,仓库的两边是住房墙,另外两边用长的建筑材料围成,且仓库的面积为

求这矩形仓库的长;

有规格为(单位:)的地板砖单价分别为/块和/块,若只选其中一种地板砖都恰好能铺满仓库的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?

查看答案和解析>>

科目: 来源: 题型:

【题目】我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做等高底三角形,这条边叫做这个三角形的等底”.

(1)概念理解:

如图1,在ABC中,AC=6,BC=3,ACB=30°,试判断ABC是否是等高底三角形,请说明理由.

(2)问题探究:

如图2,ABC等高底三角形,BC等底,作ABC关于BC所在直线的对称图形得到A'BC,连结AA′交直线BC于点D.若点BAA′C的重心,求的值.

(3)应用拓展:

如图3,已知l1l2,l1l2之间的距离为2.“等高底ABC等底”BC在直线l1上,点A在直线l2上,有一边的长是BC倍.将ABC绕点C按顺时针方向旋转45°得到A'B'C,A′C所在直线交l2于点D.求CD的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=ax2+4x+c(a≠0)经过点A(3,﹣4)和B(0,2).

(1)求抛物线的表达式和顶点坐标;

(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿直线x=3翻折,得到图象N.若过点C(9,4)的直线y=kx+b与图象M、图象N都相交,且只有两个交点,求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABC中,∠ABC=90°AB=6cmAD=24cmBCCD的长度之和为34cm,其中C是直线l上的一个动点,请你探究当C离点B有多远时,ACD是以DC为斜边的直角三角形.

查看答案和解析>>

科目: 来源: 题型:

【题目】AB两地相距60km,甲从A地去B地,乙从B地去A地,图中分别表示甲、乙两人到B地的距离y(km)与甲出发时间x(h)的函数关系图象.

(1)根据图象,求乙的行驶速度.

(2)解释交点A的实际意义.

(3)求甲出发多少时间,两人之间恰好相距5km

查看答案和解析>>

同步练习册答案