科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点N沿路线O→A→C运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)当△ONC的面积是△OAC面积的时,求出这时点N的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,长方形ABCD中,P是AD上一动点,连接BP,过点A作BP的垂线,垂足为F,交BD于点E,交CD于点G.
(1)当AB=AD,且P是AD的中点时,求证:AG=BP;
(2)在(1)的条件下,求的值;
(3)类比探究:若AB=3AD,AD=2AP,的值为 .(直接填答案)
查看答案和解析>>
科目: 来源: 题型:
【题目】在一条公路上顺次有A、B、C三地,甲、乙两车同时从A地出发,分别匀速前往B地、C地,甲车到达B地停留一段时间后原速原路返回,乙车到达C地后立即原速原路返回,乙车比甲车早1小时返回A地,甲、乙两车各自行驶的路程y(千米)与时间x(时)(从两车出发时开始计时)之间的函数图象如图所示.
(1)甲车到达B地停留的时长为 小时.
(2)求甲车返回A地途中y与x之间的函数关系式.
(3)直接写出两车在途中相遇时x的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学为了解学生到校交通方式情况,随机抽取各年级部分学生就“上下学交通方式”进行问卷调查,调查分为“A:骑自行车;B:步行;C:坐公交车;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图①)和部分扇形统计图(如图②),请根据图中的信息,解答下列问题.
(1)本次调查共抽取 名学生;
(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;
(3)若该中学共有学生3000人,估计有多少学生在上下学交通方式中选择坐公交车?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,lA,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.
(1)B出发时与A相距 千米.
(2)B出发后 小时与A相遇.
(3)B走了一段路后,自行车发生故障,进行 修理,所用的时间是 小时.
(4)若B的自行车不发生故障,保持出发时的速度前进, 小时与A相遇,相遇点离B的出发点 千米.在图中表示出这个相遇点C.
(5)求出A行走的路程S与时间t的函数关系式.(写出过程)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,一个商人要建一个矩形的仓库,仓库的两边是住房墙,另外两边用长的建筑材料围成,且仓库的面积为.
求这矩形仓库的长;
有规格为和(单位:)的地板砖单价分别为元/块和元/块,若只选其中一种地板砖都恰好能铺满仓库的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?
查看答案和解析>>
科目: 来源: 题型:
【题目】我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
(1)概念理解:
如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
(2)问题探究:
如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.
(3)应用拓展:
如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2+4x+c(a≠0)经过点A(3,﹣4)和B(0,2).
(1)求抛物线的表达式和顶点坐标;
(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿直线x=3翻折,得到图象N.若过点C(9,4)的直线y=kx+b与图象M、图象N都相交,且只有两个交点,求b的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,AB=6cm,AD=24cm,BC与CD的长度之和为34cm,其中C是直线l上的一个动点,请你探究当C离点B有多远时,△ACD是以DC为斜边的直角三角形.
查看答案和解析>>
科目: 来源: 题型:
【题目】A、B两地相距60km,甲从A地去B地,乙从B地去A地,图中、分别表示甲、乙两人到B地的距离y(km)与甲出发时间x(h)的函数关系图象.
(1)根据图象,求乙的行驶速度.
(2)解释交点A的实际意义.
(3)求甲出发多少时间,两人之间恰好相距5km?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com