相关习题
 0  357345  357353  357359  357363  357369  357371  357375  357381  357383  357389  357395  357399  357401  357405  357411  357413  357419  357423  357425  357429  357431  357435  357437  357439  357440  357441  357443  357444  357445  357447  357449  357453  357455  357459  357461  357465  357471  357473  357479  357483  357485  357489  357495  357501  357503  357509  357513  357515  357521  357525  357531  357539  366461 

科目: 来源: 题型:

【题目】如图,函数的图象过点

求该函数的解析式;

过点分别向轴和轴作垂线,垂足为,求四边形的面积;

求证:过此函数图象上任意一点分别向轴和轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在RtABC中,BAC=90°AC=2AB,点DAC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与AD重合,连接BEEC

试猜想线段BEEC的数量及位置关系,并证明你的猜想.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四边形ABCD中,MN分别是CDBC的中点,且AMCDANBC

(1)求证:∠BAD=2MAN

(2)连接BD,若∠MAN=70°,DBC=40°,求∠ADC

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线轴分别交于点,与反比例函数图象交于点,过点轴的垂线交该反比例函数图象于点

求点的坐标.

①求的值.

②试判断点与点是否关于原点成中心对称?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC的面积为3BDDC21EAC的中点,ADBE相交于点P,那么四边形PDCE的面积为(  )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】等边三角形ABC 中,BD是角平分线,点EBC边的延长线上,且CD=CE,则∠BDE的度数是(

A.90°B.100°C.120°D.无法确定

查看答案和解析>>

科目: 来源: 题型:

【题目】已知直线交于A,B两点,且点A的横坐标为4,过原点O的另一条直线l交双曲线P,Q两点(P在第一象限),由点A,B,P,Q为顶点组成的四边形面积为24,则点P的坐标为_________.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知在平面直角坐标系中,有两定点是反比例函数图象上动点,当为直角三角形时,点坐标为________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线y=ax2+bxx轴分别交于原点O和点F(10,0),与对称轴l交于点E(5,5).矩形ABCD的边ABx轴正半轴上,且AB=1,边AD,BC与抛物线分别交于点M,N.当矩形ABCD沿x轴正方向平移,点M,N位于对称轴l的同侧时,连接MN,此时,四边形ABNM的面积记为S;点M,N位于对称轴l的两侧时,连接EM,EN,此时五边形ABNEM的面积记为S.将点A与点O重合的位置作为矩形ABCD平移的起点,设矩形ABCD平移的长度为t(0≤t≤5).

(1)求出这条抛物线的表达式;

(2)当t=0时,求SOBN的值;

(3)当矩形ABCD沿着x轴的正方向平移时,求S关于t(0<t≤5)的函数表达式,并求出t为何值时,S有最大值,最大值是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】1)(观察发现)如图 1ABC CDE 都是等边三角形,且点 BCE 在一条直线上,连接 BD AEBDAE 相交于点 P,则线段 BD AE 的数量关系是 BD AE 相交构成的锐角的度数是 .(只要求写出结论,不必说明理由)

2)(深入探究 1)如图 2ABC CDE 都是等边三角形,连接 BD AEBDAE 相交于点 P,猜想线段 BD AE 的数量关系,以及 BD AE 相交构成的锐角的度数. 请说明理由 结论:

理由:_______________________

3)(深入探究 2)如图 3ABC CDE 都是等腰直角三角形,且∠ACB=∠DCE90°,连接 ADBEQ AD 中点,连接 QC 并延长交 BE K. 求证:QKBE.

查看答案和解析>>

同步练习册答案