科目: 来源: 题型:
【题目】一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三角形分割为四个都与它自己相似的小三角形.我们把(图乙)第一次顺次连接各边中点所进行的分割,称为阶分割(如图);把阶分割得出的个三角形再分别顺次连接它的各边中点所进行的分割,称为阶分割(如图)…,依此规则操作下去.阶分割后得到的每一个小三角形都是全等三角形(为正整数),设此时小三角形的面积为.请写出一个反映,,之间关系的等式________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知一次函数y=x +m和y=-x +n的图象都是经过点A(-2,0),且与y轴分别交于B、C两点.
(1)直接写出B、C两点的坐标B: ;C:
(2)求ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出△ABC关于x轴对称的△A1B1C1;
(3)△ABC 直角三角形(填“是”或“不是”);
(4)请在y轴上画一点P,使△PB1C的周长最小,并写出点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.
(1)设菱形相邻两个内角的度数分别为和,将菱形的“接近度”定义为,于是,越小,菱形越接近于正方形.
①若菱形的一个内角为,则该菱形的“接近度”等于 ;
②当菱形的“接近度”等于 时,菱形是正方形.
(2)设矩形相邻两条边长分别是和(),将矩形的“接近度”定义为,于是越小,矩形越接近于正方形.
你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.
(1)根据图象,阶梯电价方案分为三个档次,填写下表:
档次 | 第一档 | 第二档 | 第三档 |
每月用电量x(度) | 0<x≤140 |
(2)小明家某月用电120度,需交电费 元
(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;
(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E,F分别是AB,AC边上的点,且DE⊥DF.
(1)如图1,试说明;
(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三角形分割为四个都与它自己相似的小三角形.我们把(图乙)第一次顺次连接各边中点所进行的分割,称为阶分割(如图);把阶分割得出的个三角形再分别顺次连接它的各边中点所进行的分割,称为阶分割(如图)…,依此规则操作下去.阶分割后得到的每一个小三角形都是全等三角形(为正整数),设此时小三角形的面积为.请写出一个反映,,之间关系的等式________.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列语句正确的有( )句
正方形都相似;有一个角对应相等的菱形相似;
有一个角相等的两个等腰三角形相似;如果一个三角形有两个角分别为和,另一个三角形有两个角分别为和,那么这两个三角形可能不相似.
A. 个 B. 个 C. 个 D. 个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,菱形中,对角线,相交于点,且,,动点,分别从点,同时出发,运动速度均为,点沿运动,到点停止,点沿运动,到点停止后继续运动,到点停止,连接,,.设的面积为(这里规定:线段是面积的几何图形),点的运动时间为.
如图,菱形中,对角线,相交于点,且,,动点,分别从点,同时出发,运动速度均为,点沿运动,到点停止,点沿运动,到点停止后继续运动,到点停止,连接,,.设的面积为(这里规定:线段是面积的几何图形),点的运动时间为.
填空:________,与之间的距离为________;
当时,求与之间的函数解析式;
直接写出在整个运动过程中,使与菱形一边平行的所有的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com