【题目】如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E,F分别是AB,AC边上的点,且DE⊥DF.
(1)如图1,试说明;
(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.
【答案】(1)、略 (2)、
【解析】
(1)延长ED至G,使得DG=DE,根据△CDG≌△BDE,得到CG=BE;
(2)根据∠FCG=90°得到CG+CF=FG,根据中垂线的性质得到FG=EF,从而得到所求的结论.
(1)证明:延长ED至点G,使得DG=DE,连接FG,CG,
∵DE=DG,DF⊥DE,
∴DF垂直平分DE,
∴EF=FG,
∵D是BC中点,
∴BD=CD,
在△BDE和△CDG中,
,
∴△BDE≌△CDG(SAS),
∴BE=CG,∠DCG=∠DBE,
∵∠ACB+∠DBE=90°,
∴∠ACB+∠DCG=90°,即∠FCG=90°,
∵CG2+CF2=FG2,
∴BE2+CF2=EF2;
(2)解:连接AD,
∵AB=AC,D是BC中点,
∴∠BAD=∠C=45°,AD=BD=CD,
∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,
∴∠ADE=∠CDF,
在△ADE和△CDF中,
,
∴△ADE≌△CDF(ASA),
∴AE=CF,BE=AF,AB=AC=17,
∴S四边形AEDF=S△ABC,
科目:初中数学 来源: 题型:
【题目】点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使得的值最大的点,Q是y轴上使得QA十QB的值最小的点,则= ▲ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某人在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i为1∶,点P,H,B,C,A在同一个平面上,点H,B,C在同一条直线上,且PH⊥HC.则A,B两点间的距离是( )
A. 15米 B. 20米 C. 20米 D. 10米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某兴趣小组观察下雨天学校池塘水面高度h(单位:cm)与观察时间t(单位:min)的关系,并根据当天观察数据画出了如图所示的图象,请你结合图象回答下列问题:
(1)求线段BC的表达式;
(2)试求出池塘原有水面的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=x2-2x-3的图象与x轴交于A,B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).
(1)求∠OBC的度数;
(2)连接CD,BD,DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;
(3)过点P作PF⊥x轴交BC于点F,求线段PF长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=x +m和y=-x +n的图象都是经过点A(-2,0),且与y轴分别交于B、C两点.
(1)直接写出B、C两点的坐标B: ;C:
(2)求ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.
实验与探究:
(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′ 、C′ ;
归纳与发现:
(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为 ;
运用与拓广:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点P是CD边上一动点,连接PA,分别过点B、D作BE⊥PA、DF⊥PA,垂足分别为E、F,如图①。
(1)请探究BE、DF、EF这三条线段的长度具有怎样的数量关系?并说明理由。
(2)若点P在DC的延长线上,如图②,那么这三条线段的长度之间又具有怎样的数量关系?直接写出结论。
(3)若点P在CD的延长线上呢,如图③,直接写出结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.
(1)请直接写出点C、D的坐标;
(2)写出从线段AB到线段CD的变换过程;
(3)求△AOB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com