相关习题
 0  357689  357697  357703  357707  357713  357715  357719  357725  357727  357733  357739  357743  357745  357749  357755  357757  357763  357767  357769  357773  357775  357779  357781  357783  357784  357785  357787  357788  357789  357791  357793  357797  357799  357803  357805  357809  357815  357817  357823  357827  357829  357833  357839  357845  357847  357853  357857  357859  357865  357869  357875  357883  366461 

科目: 来源: 题型:

【题目】如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为奇巧数,如,,因此都是奇巧数.

1是奇巧数吗?为什么?

2)设两个连续偶数为(其中为正整数),由这两个连续偶数构造的奇巧数是4的倍数吗?为什么?

查看答案和解析>>

科目: 来源: 题型:

【题目】1)填写下表,观察被开方数的小数点与算术平方根的小数点的移动规律:

0.0016

0.16

16

1600

0.04

0.4

2)根据你发现的规律填空:

①已知,则

②已知,则 倍.

查看答案和解析>>

科目: 来源: 题型:

【题目】直线y=x﹣2与两坐标轴分别交于点A,C,交y=(x>0)于点P,PQx轴于点Q,CQ=1.

(1)求反比例函数解析式;

(2)平行于y轴的直线x=m分别交y=x﹣2,y=(x>0)于点D,B(B在线段AP上方),若SBOD=2,求m值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线y=kx+2x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=的图象在第一象限内交于点C(1,n).

(1)求一次函数y=kx+2与反比例函数y=的表达式;

(2)过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=交于P、Q两点,且PQ=2QD,求点D的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,面积为4的正方形OABC的顶点O与坐标原点重合,边OA、OC分别在x轴、y轴的正半轴上,点B、P都在函数y=(x>0)的图象上,过动点P分别作轴x、y轴的平行线,交y轴、x轴于点D、E.设矩形PDOE与正方形OABC重叠部分图形的面积为S,点P的横坐标为m.

(1)求k的值;

(2)用含m的代数式表示CD的长;

(3)求Sm之间的函数关系式.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列从左边到右边的变形,是因式分解的是(  )

A.y5y6=(y6)(y+1B.a+4a3aa+4)﹣3

C.xx1)=xxD.m+n=(m+n)(mn

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知直线y=k1x+bx轴、y轴相交于P、Q两点,与y=的图象相交于A(﹣2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;m+n=0;SAOP=SBOQ④不等式k1x+b>的解集是x<﹣20<x<1,其中正确的结论的序号是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】问题:(1)如图①,在RtABC中,ABACDBC边上一点(不与点BC重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BCDCEC之间满足的等量关系式为   

探索:(2)如图②,在RtABCRtADE中,ABACADAE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段ADBDCD之间满足的等量关系,并证明你的结论;

应用:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC45°.若BD9CD3,求AD的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知一次函数y=﹣x+b与反比例函数y=(k≠0)的图象相交于点P,则关于x的方程﹣x+b=的解是_____

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在四边形ABCD中,AB=AD,∠B+ADC=180°,点EF分别在四边形ABCD的边BCCD上,∠EAF=BAD,连接EF,试猜想EFBEDF之间的数量关系.

1)思路梳理

ABE绕点A逆时针旋转至ADG,使ABAD重合,由∠B+ADC=180°,得∠FDG=180°,即点FDG三点共线,易证AFG≌△AFE,故EFBEDF之间的数量关系为__

2)类比引申

如图2,在图1的条件下,若点EF由原来的位置分别变到四边形ABCD的边CBDC延长线上,∠EAF=BAD,连接EF,试猜想EFBEDF之间的数量关系,并给出证明.

3)联想拓展

如图3,在ABC中,∠BAC=90°AB=AC,点DE均在边BC上,且∠DAE=45°,若BD=1EC=2,直接写出DE的长为________________.

查看答案和解析>>

同步练习册答案