相关习题
 0  357909  357917  357923  357927  357933  357935  357939  357945  357947  357953  357959  357963  357965  357969  357975  357977  357983  357987  357989  357993  357995  357999  358001  358003  358004  358005  358007  358008  358009  358011  358013  358017  358019  358023  358025  358029  358035  358037  358043  358047  358049  358053  358059  358065  358067  358073  358077  358079  358085  358089  358095  358103  366461 

科目: 来源: 题型:

【题目】随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km,运行时间减少了8h,已知甲市到乙市的普快列车里程为1220km.高铁平均时速是普快平均时速的2.5倍.

1)求高铁列车的平均时速;

2)某日王先生要从甲市去距离大约780km的丙市参加1400召开的会议,如果他买到当日920从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要1小时.试问在高铁列车准点到达的情况下,它能否在开会之前20分钟赶到会议地点?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,△ABC中,AB=ACAD⊥BCCE⊥ABAE=CE.求证:

1△AEF≌△CEB

2AF=2CD

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,△ABC在正方形网格中,若点A的坐标为(03),按要求回答下列问题:

1)在图中建立正确的平面直角坐标系;

2)根据所建立的坐标系,写出点B和点C的坐标;

3)作出△ABC关于x轴的对称图形△ABC′.(不用写作法)

4)求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】2015镇江)

活动1:在一只不透明的口袋中装有标号为1233个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三位同学丙乙的顺序依次从袋中各摸出一个球(不放回),摸到1号球胜出,计算甲胜出的概率.(注:丙乙表示丙第一个摸球,甲第二个摸球,乙最后一个摸球)

活动2:在一只不透明的口袋中装有标号为12344个小球,这些球除标号外都相同,充分搅匀,请你对甲、乙、丙三名同学规定一个摸球顺序: ,他们按这个顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则第一个摸球的同学胜出的概率等于 ,最后一个摸球的同学胜出的概率等于

猜想:在一只不透明的口袋中装有标号为123nn为正整数)的n个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三名同学从袋中各摸出一个球(不放回),摸到1号球胜出,猜想:这三名同学每人胜出的概率之间的大小关系.

你还能得到什么活动经验?(写出一个即可)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,ABC中,AD是∠BAC的角平分线,若AB=AC+CD.那么∠ACB 与∠ABC有怎样的数量关系? 小明通过观察分析,形成了如下解题思路:

如图2,延长ACE,使CE=CD,连接DE,AB=AC+CD,可得AE=AB,又因为AD是∠BAC的平分线,可得ABD≌△AED,进一步分析就可以得到∠ACB 与∠ABC的数量关系.

(1) 判定ABD AED 全等的依据是______________(SSS,SAS,ASA,AAS 从其中选择一个);

(2)ACB 与∠ABC的数量关系为:___________________

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目: 来源: 题型:

【题目】为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)求该班的人数;

(2)请把折线统计图补充完整;

(3)求扇形统计图中,网络文明部分对应的圆心角的度数;

(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知在ABCADE中,∠BAC=DAE=90°AB=ACAD=AE,点CDE三点在同一条直线上,连接BDBE.以下四个结论:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中结论正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 来源: 题型:

【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且ADMNDBEMNE

1)当直线MN绕点C旋转到图1的位置时,求证:ADC≌△CEBDE=AD+BE

2)当直线MN绕点C旋转到图2的位置时,求证:DE=ADBE

3)当直线MN绕点C旋转到图3的位置时,试问DEADBE具有怎样的等量关系?请写出这个等量关系,并加以证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在⊿中,,点分别在 边上,且, .

⑴.求证:⊿是等腰三角形;

⑵.当 时,求的度数.

查看答案和解析>>

同步练习册答案