科目: 来源: 题型:
【题目】如图,已知矩形
中,
,
,
是矩形
中能剪出的最大圆,矩形
固定不动,
从如图位置开始沿射线
方向平移,当
与矩形
重叠部分面积为
面积一半时,平移距离为________________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知直线y=-2x+12分别与y轴,x轴交于A,B两点,点M在y轴上,以点M为圆心的⊙M与直线AB相切于点D,连接MD.
(1)求证:△ADM∽△AOB.
(2)如果⊙M的半径为2
,请写出点M的坐标,并写出以点
为顶点,且过点M的抛物线的函数表达式.
(3)在(2)的条件下,试问在此抛物线上是否存在点P,使以P,A,M三点为顶点的三角形与△AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形ABCD内接于⊙O,E为弧CD上任意一点,连接DE,AE.
(1)求∠AED的度数;
(2)如图②,过点B作BF∥DE交⊙O于点F,连接AF,AF=1,AE=4,求DE的长度.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图,在△ABC中,∠A是锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=
∠A,BE与CD相交于点O,探究BD与CE之间的数量关系,并证明你的结论.
(2)已知四边形ABCD,连接AC、BD交于O,且满足条件:AB+CD=AD+BC,AB2+AD2=BC2+DC2,请探究AC与BD的关系,并说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知一组数9,17,25,33,…,(8n+1)(从左往右数,第1个数是9,第2个数是17,第3个数是25,第4个数是33,依此类推,第n个数是8n+1).设这组数的前n个数的和是sn.
(1)第5个数是多少?并求1892—s5的值;
(2)若n满足方程
=
,则
的值是整数吗?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABO中,OA=OB,C是边AB的中点,以O为圆心的圆过点C.
(1)求证:AB与⊙O相切;
(2)若∠AOB=120°,AB=
,求⊙O的面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB为半圆O在直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2,④OD:OC=DE:EC,⑤OD2=DECD,正确的有( )
![]()
A.2个 B.3个 C.4个 D.5个
查看答案和解析>>
科目: 来源: 题型:
【题目】九年级三班学生苏琪为帮助同桌万宇巩固“平面直角坐标系四个象限内及坐标轴上的点的坐标特点”这一基础知识,在三张完全相同且不透明的卡片正面分别写上了﹣3,0,2三个数字,背面向上洗匀后随机抽取一张,将卡片上的数字记为a,再从剩下的两张中随机取出一张,将卡片上的数字记为b,然后叫万宇在平面直角坐标系中找出点M(a,b)的位置.
(1)请你用树状图帮万宇同学进行分析,并写出点M所有可能的坐标;
(2)求点M在第二象限的概率;
(3)张老师在万宇同学所画的平面直角坐标系中,画了一个半径为3的⊙O,过点M能作多少条⊙O的切线?请直接写出答案.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,点A在x轴上,BC⊥y轴于C,点B的横坐标为a,AB=2a,∠B=120°,在y轴上找一点P,使PA+PB最小,请画出点P,并求PA+PB的最小值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:
摸球总 次数 | 10 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 330 | 450 |
“和为8”出 现的频数 | 2 | 10 | 13 | 24 | 30 | 37 | 58 | 82 | 110 | 150 |
“和为8”出 现的频率 | 0.20 | 0.50 | 0.43 | 0.40 | 0.33 | 0.31 | 0.32 | 0.34 | 0.33 | 0.33 |
解答下列问题:
(1)如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;
(2)如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com