科目: 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象上部分点的横坐标x与纵坐标y的对应值如下表:
那么关于它的图象,下列判断正确的是( )
A. 开口向上 B. 与x轴的另一个交点是(3,0)
C. 与y轴交于负半轴 D. 在直线x=1的左侧部分是下降的
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=ax2+bx+c过原点O和B(﹣4,4),且对称轴为直线x=.
(1)求抛物线的函数表达式;
(2)D是直线OB下方抛物线上的一动点,连接OD,BD,在点D运动过程中,当△OBD面积最大时,求点D的坐标和△OBD的最大面积;
(3)如图2,若点P为平面内一点,点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,直接写出满足△POD∽△NOB的点P坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知y关于x的二次函数y=ax2﹣bx+2(a≠0).
(1)当a=﹣2,b=﹣4时,求该函数图象的对称轴及顶点坐标.
(2)在(1)的条件下,Q(m,t)为该函数图象上的一点,若Q关于原点的对称点P也落在该函数图象上,求m的值.
(3)当该函数图象经过点(1,0)时,若A(,y1),B(,y2)是该函数图象上的两点,试比较y1与y2的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】某商场经销一种商品,已知其每件进价为40元。现在每件售价为70元,每星期可卖出500件。该商场通过市场调查发现:若每件涨价1元,则每星期少卖出10件;若每件降价1元,则每星期多卖出m(m为正整数)件。设调查价格后每星期的销售利润为W元。
(1)设该商品每件涨价x(x为正整数)元,
①若x=5,则每星期可卖出____件,每星期的销售利润为_____元;
②当x为何值时,W最大,W的最大值是多少。
(2)设该商品每件降价y(y为正整数)元,
①写出W与Y的函数关系式,并通过计算判断:当m=10时每星期销售利润能否达到(1)中W的最大值;
②若使y=10时,每星期的销售利润W最大,直接写出W的最大值为_____。
(3)若每件降价5元时的每星期销售利润,不低于每件涨价15元时的每星期销售利润,求m的取值范围。
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数的图象与x轴交于A(﹣3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.
(1)求二次函数的解析式;
(2)根据图象直接写出使一次函数值大于二次函数值的x的取值范围;
(3)若直线与y轴的交点为E,连结AD、AE,求△ADE的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.
(1)求∠CBE的度数;
(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1.
①c>0;②2a﹣b=0;③<0;④若点B(﹣,y1),C(﹣,y2)为函数图象上的两点,则y1>y2;四个结论中正确的是_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点是点A(3,0),其部分图象如图,则下列结论:
①2a+b=0;
②b2﹣4ac<0;
③一元二次方程ax2+bx+c=0(a≠0)的另一个解是x=﹣1;
④点(x1,y1),(x2,y2)在抛物线上,若x1<0<x2,则y1<y2.
其中正确的结论是_____(把所有正确结论的序号都填在横线上)
查看答案和解析>>
科目: 来源: 题型:
【题目】某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).
根据以上信息,解答下列问题:
(1)该班共有________名学生.
(2)在条形统计图中,请把空缺部分补充完整.
(3)该班学生所穿校服型号的众数为__________型号,中位数为_________型号.
(4)若该校九年级有学生500人,请你估计穿175型号校服的学生有多少人?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,直线 的函数表达式为,且直线与x轴交于点D.直线与x轴交于点A,且经过点B(4,1),直线与交于点.
(1)求点D和点C的坐标;
(2)求直线的函数表达式;
(3)利用函数图象写出关于x,y的二元一次方程组的解.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com