科目: 来源: 题型:
【题目】如图,在△ABC中,∠B=∠C,AB=16cm,BC=12cm,D为AB的中点.若点P在线段BC上以4cm/s的速度由B向C运动,同时,点Q在线段CA上以a(cm/s)的速度由C向A运动,设运动的时间为t(s)(0≤t≤3)
(1)用关于t的代数式表示PC的长度.
(2)若点P,Q的运动速度相等,经过1s后,△BPD与△CQP是否全等?请说明理由.
(3)若点PQ的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作AE的垂线CF,垂足为F,过B作BD⊥BC交CF的延长线于点D
(1)试说明:AE=CD;
(2)AC=12cm,求BD的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】瑞士的一位中学教师巴尔末从光谱数据,…中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为( )
A. 36 B. 12 C. 6 D. 3
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,AD是BC边上的中线.求证:AD⊥BC.
(填空)
证明:∵AD是BC边上的中线
∴BD=CD(中线的意义)
在△ABD和△ACD中
∵
①________;②________;③________.
∴ ________≌ ________(________)
∴∠ADB=________(________)
∴∠ADB= ∠BDC=90°(平角的定义)
∴AD⊥BC(垂直的定义)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的( )
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:
居民(户) | 1 | 2 | 3 | 4 |
月用电量(度/户) | 30 | 42 | 50 | 51 |
那么关于这10户居民月用电量(单位:度),下列说法错误的是( )
A. 中位数是50 B. 众数是51 C. 方差是42 D. 极差是21
查看答案和解析>>
科目: 来源: 题型:
【题目】以四边形ABCD的边AB、AD为底边分别作等腰三角形ABF和ADE.
(1)当四边形ABCD为正方形时(如图①),以边AB、AD为斜边分别向外侧作等腰直角三角形ABF和ADE,连接EB、FD,线段BE与DF的数量关系是:= ;
(2)当四边形ABCD为矩形时(如图②),以边AB、AD为斜边分别向矩形内侧、外侧作等腰直角三角形ABF和ADE,连接EF、BD,线段EF与BD的数量关系是:= ,请填空并说明理由;
(3)当四边形ABCD为平行四边形时,以边AB、AD为底边分别向平行四边形内侧、外侧作等腰三角形ABF和ADE,且△EAD与△FBA的顶角∠AED=∠AFB=,连接EF、BD,交点为G.请用表示出∠EGD,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com