科目: 来源: 题型:
【题目】甲、乙两同学只有一张乒乓球比赛的门票,谁都想去,最后商定通过转盘游戏决定.游戏规则是:转动下面平均分成三个扇形且标有不同颜色的转盘,转盘连续转动两次,若指针前后所指颜色相同,则甲去;否则乙去.(如果指针恰好停在分割线上,那么重转一次,直到指针指向一种颜色为止)
(1)转盘连续转动两次,指针所指颜色共有几种情况?通过画树状图或列表法加以说明;
(2)你认为这个游戏公平吗?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】电动自行车已成为市民日常出行的首选工具。据某市品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月销售216辆.
(1)求该品牌电动车销售量的月平均增长率;
(2)若该品牌电动自行车的进价为2300元,售价2800元,则该经销商1月至3月共盈利多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,直线的解析式为,直线的解析式为,与轴,轴分别交于点,点,直线与交于点.
(1)求点,点,点的坐标,并求出的面积;
(2)若直线 上存在点(不与重合),满足,请求出点的坐标;
(3)在轴右侧有一动直线平行于轴,分别与,交于点,且点在点的下方,轴上是否存在点,使为等腰直角三角形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两车分别从A、B两地同时出发,在同一条公路上,匀速行驶,相向而行,到两车相遇时停止.甲车行驶一段时间后,因故停车0.5小时,故障解除后,继续以原速向B地行驶,两车之间的路程y(千米)与出发后所用时间x(小时)之间的函数关系如图所示.
(1)求甲、乙两车行驶的速度V甲、V乙.
(2)求m的值.
(3)若甲车没有故障停车,求可以提前多长时间两车相遇.
查看答案和解析>>
科目: 来源: 题型:
【题目】在一年一度的国家学生体质测试中,金星中学对全校2000名男生的1000m测试成绩进行了抽查,学校从初三年级抽取了一部分男生的成绩,并绘制成统计表,绘制成频数直方图.
序号 | 范围(单位:秒) | 频数 | 频率 |
1 | 170<x≤200 | 5 | 0.1 |
2 | 200<x≤230 | 13 | a |
3 | 230<x≤260 | 15 | 0.3 |
4 | 260<x≤290 | c | d |
5 | 290<x≤320 | 5 | 0.1 |
6 | 320<x≤350 | 2 | 0.04 |
7 | 350<x≤380 | 2 | 0.04 |
合计 | b | 1.00 |
(1)在这个问题中,总体是什么?
(2)直接写出a,b,c,d的值.
(3)补全频数直方图.
(4)初中毕业生体能测试项目成绩评定标准是男生1000m不超过4′20″(即260秒)为合格,你能估计出该校初中男生的1000m的合格人数吗?如果能,请求出合格的人数;如果不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】探究问题:已知,画一个角,使,且交于点.与有怎样的数量关系?
(1)我们发现与有两种位置关系:如图1与图2所示.
①图1中与数量关系为____________;图2中与数量关系为____________.请选择其中一种情况说明理由.
②由①得出一个真命题(用文字叙述):____________________________.
(2)应用②中的真命题,解决以下问题:若两个角的两边互相平行,且一个角比另一个角的2倍少30°,请直接写出这两个角的度数.
查看答案和解析>>
科目: 来源: 题型:
【题目】在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,点O是AB边上的动点,以O为圆心,OB为半径的⊙O与边BC的另一交点为D,过点D作AB的垂线,交于点E,连结BE、AE.
(1)当AE∥BC(如图(1))时,求⊙O的半径;
(2)设BO=x,AE=y,求y关于x的函数关系式;
(3)若以A为圆心的⊙A与⊙O有公共点D、E,当恰好也过点C时,求DE的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求证:AC=CD;
(2)若AC=AE,求∠DEC的度数.
【答案】(1)证明见解析;(2)112.5°.
【解析】试题分析: 根据同角的余角相等可得到结合条件,再加上 可证得结论;
根据 得到 根据等腰三角形的性质得到 由平角的定义得到
试题解析: 证明:
在△ABC和△DEC中, ,
(2)∵∠ACD=90°,AC=CD,
∴∠1=∠D=45°,
∵AE=AC,
∴∠3=∠5=67.5°,
∴∠DEC=180°-∠5=112.5°.
【题型】解答题
【结束】
21
【题目】一个零件的形状如图所示,工人师傅按规定做得∠B=90°,
AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com