科目: 来源: 题型:
【题目】如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,EF//BC交AC、CF于M、F,若EM=3,则CE2+CF2 的值为( )
![]()
A.36B.9C.6D.18
查看答案和解析>>
科目: 来源: 题型:
【题目】通过对下面数学模型的研究学习,解决下列问题:
(模型呈现)(1)如图1,
,
,过点
作
于点
,过点
作
于点
.由
,得
.又
,可以推理得到
.进而得到
,
.我们把这个数学模型称为“
字”模型或“一线三等角”模型;
![]()
(模型应用)(2)①如图2,
,
,
,连接
,
,且
于点
,
与直线
交于点
是
的中点;
![]()
②如图3,在平面直角坐标系
中,点
的坐标为
,点
为平面内任一点.若
是以
为斜边的等腰直角三角形,请直接写出点
的坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】春节前小明花1200元从市场购进批发价分别为每箱30元与50元的
、
两种水果进行销售,分别以每箱35元与60元的价格出售,设购进
水果
箱,
水果
箱.
(1)求
关于
的函数表达式;
(2)若要求购进
水果的数量不少于
水果的数量,则应该如何分配购进
、
水果的数量并全部售出才能获得最大利润,此时最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知二次函数y=x2-4x+3.
(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;
(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AGAB=12,求AC的长;
(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某天早上爸爸骑车从家送小明去上学.途中小明发现忘带作业本,于是他立即下车,下车后的小明匀速步行继续赶往学校,同时爸爸加快骑车速度,按原路匀速返回家中取作业本(拿作业本的时间忽略不计),紧接着以返回时的速度追赶小明.最后两人同时达到学校.
如图是小明离家的距离
与所用时间
的函数图像.请结合图像回答下列问题:
![]()
(1)小明家与学校距离为______
,小明步行的速度为______
;
(2)求线段
所表示的
与
之间的函数表达式;
(3)在同一坐标系中画出爸爸离家的距离
与所用时间
的关系的图像.(标注相关数据)
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,
(1) 取点M(1,0),则点M到直线l:
的距离为_________,取直线
与直线l平行,则两直线距离为_________.
(2) 已知点P为抛物线y=x2-4x的x轴上方一点,且点P到直线l:
的距离为
,求点P的坐标.
(3) 若直线y=kx+m与抛物线y=x2-4x相交于x轴上方两点A、B(A在B的左边),且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离的最大时直线y=kx+m的解析式.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上.将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.
![]()
(1)在正方形网格中,画出△AB′C′;
(2)计算线段AB在变换到AB′的过程中扫过的区域的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB是⊙O的直径,点C、D在⊙O上,且AC平分∠BAD,点E为AB的延长线上一点,且∠ECB=∠CAD.
(1)①填空:∠ACB= ,理由是 ;
②求证:CE与⊙O相切;
(2)若AB=6,CE=4,求AD的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数y=(2m+1)x+m﹣3.
(1)若函数图象经过原点,求m的值;
(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;
(3)若这个函数是一次函数,且图象不经过第四象限,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com