相关习题
 0  358320  358328  358334  358338  358344  358346  358350  358356  358358  358364  358370  358374  358376  358380  358386  358388  358394  358398  358400  358404  358406  358410  358412  358414  358415  358416  358418  358419  358420  358422  358424  358428  358430  358434  358436  358440  358446  358448  358454  358458  358460  358464  358470  358476  358478  358484  358488  358490  358496  358500  358506  358514  366461 

科目: 来源: 题型:

【题目】随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:

时间(分钟)

里程数(公里)

车费(元)

小明

8

8

12

小刚

12

10

16

(1)求x,y的值;

(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ABC的三边ABBCCA长分别为304050.其三条角平分线交于点O,则SABO SBCO SCAO =______

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC4,面积为24,AC的垂直平分线EF分别交边AC,AB于点E,F,DBC边的中点,M为线段EF上一动点,CDM的周长的最小值为 (  )

A.8B.10C.12D.14

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,点 AB的坐标分别为(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.

(1)图1中,点C的坐标为

(2)如图2,点D的坐标为(0,1),点E在射线CD上,过点BBFBEy轴于点F

①当点E为线段CD的中点时,求点F的坐标;

②当点E在第二象限时,请直接写出F点纵坐标y的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】电子跳蚤游戏盘是如图所示的△ABCAB=AC=BC=5.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1= CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2= AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3= BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为Pnn为正整数),则点P2016与点P2017之间的距离为_________

查看答案和解析>>

科目: 来源: 题型:

【题目】爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AF、BE是ABC的中线,AFBE于点P,像ABC这样的三角形称为“中垂三角形”.设BC=a,AC=b,AB=c.

(特例探究)

(1)如图1,当tan∠PAB=1,c=2时,a=   ,b=   

如图2,当PAB=30°,c=4时,a=   ,b=   

(归纳证明)

(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.

(拓展证明)

(3)如图4,ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BECE于E,AF与BE相交点G,AD=6,AB=6,求AF的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=   ;直线BC与直线B′C′所夹的锐角为   度;

(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;

3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,直线AB分别与两坐标轴交于点A(6,0),B(0,12),点C的坐标为(3,0)

(1)求直线AB的解析式;

(2)在线段AB上有一动点P.

过点P分别作x,y轴的垂线,垂足分别为点E,F,若矩形OEPF的面积为16,求点P的坐标.

连结CP,是否存在点P,使ACP与AOB相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,点A坐标(0,6),ACy轴,且AC=AO,点B,C横坐标相同,点D在AC上,tan∠AOD=,若反比例函数y=(x>0)的图象经过点B、D.

(1)求:k及点B坐标;

(2)将AOD沿着OD折叠,设顶点A的对称点A1的坐标是A1(m,n),求:代数式m+3n的值以及点A1的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读材料:数学课上,吴老师在求代数式x2﹣4x+5的最小值时,利用公式a2±2ab+b2=(a±b)2,对式子作如下变形:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,

因为(x﹣2)2≥0,

所以(x﹣2)2+1≥1,

x=2时,(x﹣2)2+1=1,

因此(x﹣2)2+1有最小值1,即x2﹣4x+5的最小值为1.

通过阅读,解下列问题:

(1)代数式x2+6x+12的最小值为   

(2)求代数式﹣x2+2x+9的最大或最小值;

(3)试比较代数式3x2﹣2x2x2+3x﹣7的大小,并说明理由.

查看答案和解析>>

同步练习册答案