科目: 来源: 题型:
【题目】在直角坐标系中,直线
与y轴交于点
,按如图方式作正方形
、
、
、…,点
、
、
、…在直线
上,点
、
、
、…,在x轴上,图中阴影部分三角形的面积从左到右依次记为
、
、
、…
,则
_______,
________.(用含n的代数式表示,n为正整数)
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).
![]()
(1)求这个抛物线的解析式;
(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;
(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】小李以每千克0.8元的价格从批发市场购进若干千克的西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完,销售金额与西瓜的千克数之间的关系如图所示,那么小李赚了( )
![]()
A. 32元B. 36元C. 38元D. 44元
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在等边△ABC中,线段AM为BC边上的高,D是AM上的点,以CD为一边,在CD的下方作等边△CDE,连结BE.
(1)填空:∠ACB=____;∠CAM=____;
(2)求证:△AOC≌△BEC;
(3)延长BE交射线AM于点F,请把图形补充完整,并求∠BFM的度数;
(4)当动点D在射线AM上,且在BC下方时,设直线BE与直线AM的交点为F.∠BFM的大小是否发生变化?若不变,请在备用图中面出图形,井直接写出∠BFM的度数;若变化,请写出变化规律.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,直线l:y=
x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=
x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:在△ABC中,AB=AC.D是直线BC上的点,DE⊥AB.垂足是点E.
(1)如图①,当∠A=50
,点D在线段BC延长线上时,∠EOB=____;
(2)如图②,当∠A=50
,点D在线段BC上时,∠EDB=____;
(3)如图③,当∠A=110
,点D在线段BC上时,∠EDB=____;
![]()
(4)结合(1)、(2)、(3)的结果可以发现,∠EDB与∠A的数量关系是∠EDB=____∠A.
(5)按你发现的规律,当点D在线段BC延长线上,∠EDB=50
,其余条件不变时如图④,不用计算,直接填空∠BAC=____.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.
(1)求证:四边形ABCD是平行四边形;
(2)若AB=3cm,BC=5cm,AE=
AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形?
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).
(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;
(2)△ABC的面积是 .
(3)点P(a+1,b-1)与点C关于x轴对称,则a= ,b= .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,等边三角形
的边长为4,
为边
上一点,过点
作
,交
于点
,在
右侧作等边三角形
,记
到
的距离为
,
到
的距离为
,
(1)若
,试求线段
的长,并求m1、m2的值.
(2)若
,用含
的代数式表示
,
,并求
在∠C的平分线上时x的值.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
| 甲 | 乙 |
原料成本 | 12 | 8 |
销售单价 | 18 | 12 |
生产提成 | 1 | 0.8 |
(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com