科目: 来源: 题型:
【题目】学校对初2021级甲、乙两班各60名学生进行知识测试(满分60分),测试完成后分别抽取了12份成绩,整理分析过程如下,请补充完整.
(收集数据)
甲班12名学生测试成绩统计如下:
45,59,60,38,57,53,52,58,60,50,43,49
乙班12名学生测试成绩统计如下:
35,55,46,39,54,47,43,57,42,59,60,47
(整理数据)
按如下分数段整理,描述这两组样本数据
组别频数 | |||||
甲 | 0 | 1 | 3 | 3 | 5 |
乙 | 2 | 2 | 3 | 1 | 4 |
(分析数据)
两组样本数据的平均数、众数、中位数、方差如下表所示:
班级 | 平均数 | 众数 | 中位数 |
甲 | 52.5 | ||
乙 | 48.7 | 47 |
(1) , ;
(2)若规定得分在40分及以上为合格,请估计乙班60名学生中知识测试合格的学生有多少人?
(3)你认为哪个班的学生知识测试的整体水平较好,请说明一条理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱降价1元,每天可多售出2箱.
(1)如果要使每天销售饮料获利14000元,问每箱应降价多少元?
(2)每箱降价多少元超市每天获利最大?最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】阅读理解
材料一:已知在平面直角坐标系中有两点,,其两点间的距离公式为:,当两点所在直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可化简为或;
材料二:如图1,点,在直线的同侧,直线上找一点,使得的值最小.解题思路:如图2,作点关于直线的对称点,连接交直线于,则点,之间的距离即为的最小值.
请根据以上材料解决下列问题:
(1)已知点在平行于轴的直线上,点在第二象限的角平分线上,,求点的坐标;
(2)如图,在平面直角坐标系中,点,点,请在直线上找一点,使得最小,求出的最小值及此时点的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,在边长为个单位长度的小正方形组成的方格中,点都在格点上.
(1)画出ΔABC绕着点B逆时针旋转90°得到的ΔA'B'C',并写出的A'的坐标__________
(2)在(1)的情况下,直接写出线段AA’的长度____________.
(3)在y轴上找一点P,使ΔPAB的周长最小,直接写出P的坐标_____________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC和△DEF关于点O成中心对称.
(1)作出它们的对称中心O,并简要说明作法;
(2)若AB=6,AC=5,BC=4,求△DEF的周长;
(3)连接AF,CD,试判断四边形ACDF的形状,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,使点对应点落在直线上,再将绕点旋转到的位置,使点的对应点落在直线上,依次进行下去…,若点的坐标为,点的坐标为,则点的横坐标为___________.
查看答案和解析>>
科目: 来源: 题型:
【题目】(多选)在同一条道路上,甲车从地到地,乙车从地到地,两车同时出发,乙车先到达目的地,图中的折线段表示甲,乙两车之间的距离(千米)与行驶时间(小时)的函数关系,下列说法正确的是( )
A.甲乙两车出发2小时后相遇
B.甲车速度是40千米/小时
C.相遇时乙车距离地100千米
D.乙车到地比甲车到地早小时
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com